@Diligence

FUZZING SCRIBBLE ABOUT

Gamma

1 Executive Summary

2 Scope
2.1 Objectives

2.2 Discussion
3 Findings

3.1 The Hypervisor.deposit
function does not check the

msg.sender Y Fixed

3.2 UniProxy.depositSwap -
Tokens are not approved before
calling Router.exactInput

v Fixed

3.3 Uniproxy.depositSwap -

_router should not be
determined by the caller

v Fixed

3.4 Re-entrancy + flash loan attack

can invalidate price check
v Fixed

3.5 The deposit function of the
Hypervisor contract should only
be called from UniProxy

v Fixed

3.6
UniProxy.properDepositRatio -
Proper ratio will not prevent

liquidity imbalance for all possible

scenarios v Fixed

3.7 UniProxy - SafeERC20 is
declared but safe functions are
not used Vv Fixed

3.8 Missing/wrong
implementation v Fixed

3.9 Hypervisor.withdraw -
Possible reentrancy
v Fixed

3.10 UniProxy.depositSwap
doesn’t deposit all the users’
funds Medium | ¥ Fixed

3.11 Hypervisor - Multiple
“sandwiching” front running
vectors Medium | ¢ Fixed

3.2 Full test suite is necessary
Medium

3.13 Uniswap v3 callbacks access

control should be hardened

[Minor AT

3.14 Code quality comments

m ¥ Fixed
Appendix 1 - Files in Scope

Appendix 2 - Disclosure

Date February 2022

Sergii Kravchenko, David

Auditors]
Oz Kashi

1 Executive Summary

This report presents the results of our engagement with Gamma to review its smart contracts.

The initial review was conducted over two weeks, from January 31, 2022 to February 11, 2022 by Sergii Kravchenko and David
Oz Kashi. A total of 20 person-days were spent. Mitigations review was conducted over additional two weeks, from March 14,
2022 to March 25, 2022. A total of 10 person-days were spent on the mitigations review.

The inital review of was conducted on a best-effort basis, the code was not production ready. Later, the Gamma team introduced
fixes to the issues mentioned in the original report. Mitigations were reviewed by us, all issues except from improving the test
coverage were addressed.

2 Scope

Our review focused on the commit hash 41fdaabf79864478523e87924d4e80d80dfe4879 . Mitigations review focused on the commit hash
9a7a3dd88e8e8b106bf5doedc56e879442a72181 The list of files in scope can be found in the Appendix.

2.1 Objectives
Together with the Gamma team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended functionality, and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

2.2 Discussion

e During the review we have discovered that the system is heavily parameterized by the owners of uniproxy and Hypervisor . We
recommend implementing a time-lock that informs users of planned changes and gives them sufficient time to react to an
unwanted change. It is also recommended to use a multisig contract or other transparent governance mechanisms to initiate
changes, and ensure that private keys are managed securely.

e The ownership transfer is one-step which might come with a significant risk of losing access to the contract.

e Token contracts have to be carefully vetted for compatibility with Gamma. Bugs, privileges of operators, non-standard or
weird behavior, and more or less accepted features like blacklisting, and upgradeability obviously can have an impact on the
protocol and cause lost or stuck funds.

3 Findings
Each issue has an assigned severity:

o ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

. issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

3.1 The Hypervisor.deposit function does not check the msg.sender ey

Resolution

Partially fixed in GammaStrategies/hypervisor@ 9a7asdd , by allowing only whitelistedAddress to call deposit , or anyone if
whitelisted = false (currently itis setto true by default).

Description

Hypervisor.deposit PuUlls pre-approved ERC20 tokens from the fron address to the contract. Later it mints shares to the +to
address. Attackers can determine both the from and to addresses as they wish, and thus steal shares (that can be redeemed to
tokens immediately) from users that pre-approved the contract to spend ERC20 tokens on their behalf.

https://github.com/GammaStrategies/hypervisor/tree/41fd4abf79864478523e87924d4e80d80df04879
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

Recommendation

As described in issue 3.5, we recommend restricting access to this function only for uniproxy . Moreover, the uniproxy contract
should validate that from == msg.sender .

3.2 UniProxy.depositSwap - Tokens are not approved before calling Router.exactInput om

v Fixed

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7a3dd by deleting the depositswap function.

Description

the call to router.exactInput requires the sender to pre-approve the tokens. We could not find any reference for that, thus we
assume that a call to uniproxy.depositswap Will always revert.

Examples

code/contracts/UniProxy.sol:L202-L234

router = ISwapRouter(_router);
uint256 amountOut;

uint256 swap;

if(swapAmount < @) {

swap = uint256(swapAmount * -1);
IHypervisor(pos).tokenl1().transferFrom(msg.sender, address(this), depositi+swap);
amountOut = router.exactInput(
ISwapRouter.ExactInputParams(

path,

address(this),

block.timestamp + swaplLife,

swap,

deposit@

);
}

else{

swap = uint256(swapAmount);
IHypervisor(pos).token@().transferFrom(msg.sender, address(this), deposit@+swap);

amountOut = router.exactInput(
ISwapRouter.ExactInputParams(
path,
address(this),
block.timestamp + swaplLife,
swap,
depositi

Recommendation

Consider approving the exact amount of input tokens before the swap.

3.3 Uniproxy.depositSwap - _router should not be determined by the caller = vz

Resolution

Fixed in GammaStrategies/hypervisor@ 9aza3dd by deleting the depositswap function.

Description

Uniproxy.depositSwap US€S _router that is determined by the caller, which in turn might inject a “fake” contract, and thus may steal
funds stuck in the uniproxy contract.

The uniproxy contract has certain trust assumptions regarding the router. The router is supposed to return not less than deposit1
(or deposite) amount of tokens but that fact is never checked.

Examples

code/contracts/UniProxy.sol:L168-L177

function depositSwap(
int256 swapAmount,
uint256 deposit®o,
uint256 depositl,
address to,
address from,
bytes memory path,
address pos,
address _router
) external returns (uint256 shares) {

https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

Recommendation

Consider removing the _router parameter from the function, and instead, use a storage variable that will be initialized in the
constructor.

3.4 Re-entrancy + flash loan attack can invalidate price check / Fixed

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7a3dd by implementing the auditor’s recommendation.

Description
The uniproxy contract has a price manipulation protection:

code/contracts/UniProxy.sol:L75-L82

if (twapCheck || positions[pos].twapOverride) {
checkPriceChange(
pos,

(positions[pos].twapOverride ? positions[pos].twapInterval : twapInterval),
(positions[pos].twapOverride ? positions[pos].priceThreshold : priceThreshold)

);
}

But after that, the tokens are transferred from the user, if the token transfer allows an attacker to hijack the call-flow of the
transaction inside, the attacker can manipulate the Uniswap price there, after the check happened. The Hypervisor’s deposit
function itself is vulnerable to the flash-loan attack.

Recommendation

Make sure the price does not change before the Hypervisor.deposit call. For example, the token transfers can be made at the
beginning of the unipProxy.deposit function.

3.5 The deposit function of the Hypervisor contract should only be called from UniProxy

v Fixed

Resolution

Partially fixed in GammaStrategies/hypervisor@ 9azasdd , by allowing only whitelistedaddress to call deposit , Or anyone if
whitelisted = false (currently itis setto true by default).

Description

The deposit function is designed to be called only from the uniproxy contract, but everyone can call it. This function does not
have any protection against price manipulation in the Uniswap pair. A deposit can be frontrunned, and the depositor’s funds may
be “stolen”.

Recommendation

Make sure only uniproxy can call the deposit function.

3.6 UniProxy.properDepositRatio - Proper ratio will not prevent liquidity imbalance for all
possible scenarios ¢ Fixed

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7asdd by deleting the properbepositratio function.

Description

UniProxy.properDepositRatio PUrpose is to be used as a mechanism to prevent liquidity imbalance. The idea is to compare the deposit
ratio with the hyperatio , which is the ratio between the tokens held by the Hypervisor contract. In practice, however, this function
will not prevent a skewed deposit ratio in many cases. deposit1 / deposite Might be a huge number, while

10716 <= depositRatio <= 18218 , and 16216 <= hypeRatio <= 10218 . Let us consider the case where hype1 / hypes >= 10 , that means

hypeRatio = 10418 , aNd NOW if deposit1 / deposite = 104208 for example, depositratio = 18218 , and the transaction will pass, which is
clearly not intended.

Examples

code/contracts/UniProxy.sol:L258-L275

https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

function properDepositRatio(
address pos,
uint256 deposito,
uint256 depositl
) public view returns (bool) {
(uint256 hype®, uint256 hypel) = IHypervisor(pos).getTotalAmounts();
if (IHypervisor(pos).totalSupply() '= 0) {
uint256 depositRatio = deposit® == 0 ? 10e18 : deposit1.mul(1e18).div(deposit@);
depositRatio = depositRatio > 10e18 ? 10e18 : depositRatio;
depositRatio = depositRatio < 10e16 ? 10e16 : depositRatio;
uint256 hypeRatio = hype@ == 0 ? 10e18 : hypel.mul(1e18).div(hype®);
hypeRatio = hypeRatio > 10e18 ? 10e18 : hypeRatio;
hypeRatio = hypeRatio < 10e16 ? 10e16 : hypeRatio;
return (FullMath.mulDiv(depositRatio, deltaScale, hypeRatio) < depositDelta &&
FullMath.mulDiv(hypeRatio, deltaScale, depositRatio) < depositDelta);
}

return true;

}

Recommendation

Consider removing the cap of [0.1,10] both for depositRatio and for hypeRratio .

3.7 UniProxy - SafeERC20 is declared but safe functions are not used m (Vi

Resolution

fixed in GammaStrategies/hypervisor@ 9va7asdd by implementing the auditor’s recommendation.

Description

The uniproxy contract declares the usage of the safeerc2e library for functions of the 1erc2e type. However, unsafe functions are
used instead of safe ones.

Examples

° Usage of approve instead of safeApprove

b Usage of transferfrom instead of safeTransferFrom .

3.8 Missing/wrong implementation ¢zm (Ve

Resolution

1. Fixed in GammasStrategies/hypervisor@ 9a7a3dd by introducing two new functions: toggleDepositoverride ,

setPriceThresholdPos .
2. Fixed in GammaStrategies/hypervisor@ 9a7asdd by keeping only the version of deposit function with 4 parameters.

3. Fixed in GammaStrategies/hypervisor@ 9a7asdd by removing the unreachable code.

Examples

1. The uniproxy contract has different functions used for setting the properties of a position. However, Pposition.priceThreshold ,
and Pposition.depositoverride are never assigned to, even though they are being used.

2. UniProxy.deposit iS calling IHypervisor.deposit Mmultiple times with different function signatures (3 and 4 parameters), while the
Hypervisor contract only implements the version with 4 parameters, and does not implement the 1Hypervisor interface.

3. Hypervisor.uniswapV3MintCallback | uniswapV3SwapCallback - both these functions contain unreachable code, namely the case where

payer != address(this) .
Recommendations

1. Consider adding functions to set these properties, or alternatively, a single function to set the properties of a position.

2. Consider supporting a single deposit function for 1hypervisor , and make sure that the actual implementation adheres to this
interface.

3. Consider deleting these lines.

3.9 Hypervisor.withdraw - Possible reentrancy czm v

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7asdd by implementing the auditor’s recommendation.

Description

Hypervisor.withdraw can be used by a liquidity provider to withdraw its deposit from the Hypervisor contract. A user can get his
deposited liquidity back in exchange for the burn of his shares . The function is transferring tokene,1 to the user first and then
burns his shares . In theory, the contracts of tokene,1 may hijack the execution call-flow causing a reentrant call to deposit , which
will use the stale value for totalsupply() to evaluate the number of shares to be minted. Since this value will be greater than what

https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

it should be, the attacker will be able to mint shares for free, that could be later redeemed for actual tokens stolen from other
depositors.

Recommendation

Consider addinga ReentrancyGuard both to Hypervisor.withdraw and Hypervisor.deposit

3.10 UniProxy.depositSwap doesn’t deposit all the users’ funds wedium VR

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7a3dd by deleting the depositswap function.

Description

When executing the swap, the minimal amount out is passed to the router (deposit1 in this example), but the actual swap amount
will be amountout . But after the trade, instead of depositing amountout , the contract tries to deposit deposit1 , which is lower. This
may result in some users’ funds staying in the uniproxy contract.

code/contracts/UniProxy.sol:L220-L242

else{

swap = uint256(swapAmount);
IHypervisor(pos).token@().transferFrom(msg.sender, address(this), deposit@+swap);

amountOut = router.exactInput(
ISwapRouter.ExactInputParams(
path,
address(this),
block.timestamp + swaplLife,
swap,
depositi

)
}

require(amountOut > @, "Swap failed");

if (positions[pos].version < 2) {
shares = IHypervisor(pos).deposit(deposit®, deposit1, address(this));
IHypervisor(pos).transfer(to, shares);

}

Recommendation

Deposit all the user’s funds to the Hypervisor.

3.11 Hypervisor - Multiple “sandwiching” front running vectors wiedium [VFied

Resolution

Fixed in GammaStrategies/hypervisor@ 9azasdd by removing the call to pool.swap , and adopting the auditor recommendation

for pool.mint , pool.burn with slippage = 10%

Description

The amount of tokens received from uniswapvarool functions might be manipulated by front-runners due to the decentralized
nature of AMMs, where the order of transactions can not be pre-determined. A potential “sandwicher” may insert a buying order
before the user’s call to Hypervisor.rebalance for instance, and a sell order after.

More specifically, calls to pool.swap , pool.mint , pool.burn are susceptible to “sandwiching” vectors.

Examples

Hypervisor.rebalance

code/contracts/Hypervisor.sol:L278-L286

if (swapQuantity !'= @) {
pool.swap (
address(this),
swapQuantity > 0,
swapQuantity > @ ? swapQuantity : -swapQuantity,
swapQuantity > @ ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1,
abi.encode(address(this))

code/contracts/Hypervisor.sol:L348-L363

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

function _mintLiquidity(
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
address payer
) internal returns (uint256 amount®, uint256 amount1) {
if (liquidity > @) {
(amount®, amount1) = pool.mint(
address(this),
tickLower,
tickUpper,
liquidity,
abi.encode(payer)

code/contracts/Hypervisor.sol:L365-L383

function _burnLiquidity(
int24 tickLower,
int24 tickUpper,
uint128 liquidity,
address to,
bool collectAll
) internal returns (uint256 amount®, uint256 amount1) {
if (liquidity > @) {
// Burn liquidity
(uint256 owed@, uint256 owed1) = pool.burn(tickLower, tickUpper, liquidity);

// Collect amount owed
uint128 collect® = collectAll ? type(uint128).max : _uint128Safe(owedd);

uint128 collect1 = collectAll ? type(uint128).max : _uint128Safe(owed1);

if (collect® > @ || collectl > 0) {
(amount®, amountl1) = pool.collect(to, tickLower, tickUpper, collect®, collect1);

Recommendation

Consider adding an amountMin parameter(s) to ensure that at least the amountmin of tokens was received.

3.12 Full test suite is necessary iedgium

Description

The test suite at this stage is not complete. It is crucial to have a full test coverage that includes the edge cases and failure
scenarios, especially for complex system like Gamma.

As we've seen in some smart contract incidents, a complete test suite can prevent issues that might be hard to find with manual

reviews.

Some issues such as issue 3.8, issue 3.2 could be caught by a full-coverage test suite.

3.13 Uniswap v3 callbacks access control should be hardened grrm e

Resolution

Fixed in GammaStrategies/hypervisor@ 9a7a3dd by implementing the auditor’'s recommendation for uniswapvamintcallback , and

deleting uniswapV3swapCallback and the call to pool.swap .

Description

Uniswap v3 uses a callback pattern to pull funds from the caller. The caller, (in this case Hypervisor) has to implement a callback
function which will be called by the Uniswap’s pool. Both uniswapvamintcallback and uniswapv3swapCallback restrict the access to the
callback functions only for the poo1 . However, this alone will not block a random call from the poo1 contract in case the latter was
hacked, which will result in stealing all the funds held in Hypervisor or of any user that approved the Hypervisor contract to transfer

tokens on his behalf.

Examples

code/contracts/Hypervisor.sol:L407-L445

https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

function uniswapV3MintCallback(
uint256 amount®,
uint256 amounti,
bytes calldata data
) external override {
require(msg.sender == address(pool));
address payer = abi.decode(data, (address));

if (payer == address(this)) {
if (amount® > @) token@.safeTransfer(msg.sender, amount®);
if (amount1 > @) tokenl.safeTransfer(msg.sender, amountl);
} else {
if (amount® > @) token®.safeTransferFrom(payer, msg.sender, amount@);
if (amount1 > @) tokenl.safeTransferFrom(payer, msg.sender, amountl);

}

function uniswapV3SwapCallback(
int256 amount®Delta,
int256 amounti1Delta,
bytes calldata data
) external override {
require(msg.sender == address(pool));
address payer = abi.decode(data, (address));

if (amount@Delta > @) {
if (payer == address(this)) {
token®.safeTransfer(msg.sender, uint256(amount@Delta));
} else {
token@.safeTransferFrom(payer, msg.sender, uint256(amount@Delta));

}
} else if (amountiDelta > @) {

if (payer == address(this)) {
token1.safeTransfer(msg.sender, uint256(amountiDelta));
} else {
token1.safeTransferFrom(payer, msg.sender, uint256(amountiDelta));

}

Recommendation

Consider adding (boolean) storage variables that will help to track whether a call to uniswapvaMintcallback | uniswapV3SwapCallback Was
preceded by a call to _mintLiquidity | rebalance respectively. An example for the rebalance function would be bool rebalancecalled ,
this variable will be assigned a true value in rebalance before the external call of pool.swap , then uniswapvaswapcaliback Will require
that rebalancecalled == true , and then right after rebalancecalled Will be assigned a faise value.

314 Code quality comments grm (Ve

Resolution

1. Fixed in GammaStrategies/hypervisor@ 9a7a3dd by removing the from parameter.
2. Fixed in GammaStrategies/hypervisor@ 9a7asdd by implementing the auditor’'s recommendation.

3. Fixed in GammaStrategies/hypervisor@ 9a7a3dd by deleting depositswap .

Examples

1. UniProxy.deposit - from parameter is never used.
2. uniProxy - MAX_INT should be changed to wmax_uint .

3. Consider using compiler version >= 0.8.0, and make sure that the compiler version is specified explicitly for every .sol file in
the repo.

4. uniProxy - Minimize code duplication in deposit and depositSwap .

Appendix 1 - Files in Scope

This audit covered the following files:

File SHA-1 hash
/contracts/UniProxy.sol 58f485f3b0638da3a953a06e4a5f24c46¢c313869

Jcontracts/Hypervisor.sol 91170d74e8b49f874ffb4c8663225a93f81b24ec

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports

https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181
https://github.com/GammaStrategies/hypervisor/commit/9a7a3dd88e8e8b106bf5d0e4c56e879442a72181

in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

rowereo o Y CONSENSYS

https://consensys.net/

