DeFi Saver

Consensys Diligence

Date March 2021

1 Executive Summary

Lead Auditor Shayan Eskandari

This report presents the results of our engagement with DeFi Saver to review DeFi Saver V3 architecture, which is the new Co-auditors David Oz Kashi
version of smart contracts that are used for their dashboard.

The review was conducted over two weeks, from March 22, 2021 to April 2, 2021 by Shayan Eskandari and David Oz Kashi. A total of 20 person-days were spent.

2 Scope

Our review focused on the commit hash cb29669a84c2d6fffaf2231c0938eb407¢060919 . The list of files in scope can be found in the Appendix. Note that functionalities
regarding Strategy and Subscriptions were not in the scope of this audit.

3 System Overview

DeFi Saver acts as a proxy (dashboard) for users to interact with DeFi protocols. Users can chain actions (create recipes) and run multiple actions in one
transaction.

Here is an overview of the DeFi Saver smart contract system:

A

Owner

DFSRegistry

FLAaveV2
ve Compound

flashloan()

CompPayback

CompClaim

-4 Parselnputs

oo jg SPDTOVEWAL CPET L0dChANgE

& espstr |~~~ STy ke e e e e e e =
{oivowee g cancelWaltrariodchangs — — . enterMarkets()
@ onlycraner 4 + exitMarket()
A * borrow() Compound
« claimComp() P
Aave + withdrawTokens()

« borrowBalanceCurrent()

« repayBorrow()

+ mint()

« redeem()

« redeemUnderlying()

AaveBorrow

AavePayback

constr

[]
[1
[AaveSuuply]
:]

Owner
T & _ constr__ « repay()
| I AavePayback « borrow()
i = * :T&‘L?gﬂ{} Aave Lending Pool
User : *
ZeroxWrapper Call{_CallData) o, ‘
Similar workflow exists for dydx Y [T T T T T TTTTTTEmmE s "
loans and flashioan, which are not i &
included in this graph [O
1
8 takeorde [
 rekeoss ' [SafeERC20]
__ & _r:gﬁatr_ I e e
! |
: 1
: safeTransfer (@)
I .- safeTransferfFrom (@)
---------------- ; B S safeApprove
DFSExchange : : safeIncreaseillowance
___________________ : safeDecreaseAllowance
|
I
I
I
I
I
IExchangeV3 |
Feme - :
: KyberWrapperV3 !
I Math | [
=== - | I
I | I
! Y mconst: * & == - .-
i & — & sass « getExpectedRate()
I & buy R e i T I >
IR H 4, getsellRate
4 getBuyRate
All executeActionDirect() 4 actionType & _ constr
functions , in all smart contracts, « paresinpucs ! Kyber Network Proxy
can be called directly by any user \ ¥ parssinpuE J i T
threugh DSPraxy ; UniswapWrappery/3
& =il M
!) e ‘
enChainSwap---------- & ouy e o » F_)
A getsellmate « swapTokensForExactTokens() ‘
stsellRate « swapExactTokensForTokens() ﬂ
<4 getBuyRata

& _ comstr__
Uniswap Router

4 Security Specification

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for documentation.

41 Actors
The relevant actors are listed below with their respective abilities:
e Owner

o Add new contracts to the DeFi Saver system (Registry)

o Swap any contract in the registry.
= Note that in the code base there is a waitreriod defined for changes in the contracts. However owner can set this wait time to O and consequently
change the modules/contracts in DeFi Saver registry.

(¢]

Add or Remove wrapper contracts. Wrappers are used to interact with other DeFi protocols, such as Ox, Uniswap, etc

(e}

Add and change the proxies used in the system

(e}

Change Fee wallet address
Set Ox Addresses

(o]

e Admin

o withdrawStuckFunds - Based on the design no user funds may be kept in DeFi Saver contracts. Although if by accident that happens, Admin will be able to
withdraw them to their own address

e User

4.2 Trust Model

In any system, it's important to identify what trust is expected/required between various actors. For this audit, we established the following trust model:

e Many functionalities of DeFi Saver dashboard, uses constructed CallData to execute different actions in the smart contract systems, hence the Ul has control
over the function executed in the smart contracts. This is essential to the security of the system. Note that due to the way the transactions are crafted on the
front-end, it's not possible for the wallet (e.g. MetaMask) to show the user the exact actions that the transaction will be taking (User sees a blob of data), this
increases the risk of the attack going unnoticeable until after the fact. The attack can be done with simple change in the outgoing address at the end of the
recipe or more sophisticated crafted transaction to steal user funds (e.g. Approve Tokens for attackers address).

¢ As mentioned in the Actors section, owner has the ability to change the underlying contracts without any waiting period.

e There is no allowlist for tokens that are supported in DeFi Saver. Although implicitly the allowlist for other DeFi platforms are applied when interacting with that
specific protocol(e.g tokens supported by Aave when interactive with Aave), but still a maliciously-crafted token implementation can be used within DeFi Saver
platform.

e The usage of the bsproxy pattern provides an environment that is protected from outsider access by design.

5 Findings
Each issue has an assigned severity:

o [T issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

e 'medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear reason not to.

o [T issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be exploited. All major issues should
be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 Random task execution 7 Fixed

Resolution

Fixed in DecenterApps/defisaver-v3-contracts@ 47sescd by adding ReentrancyGuard tO the executeoperation function.

Description

In a scenario where user takes a flash loan, _parseFLandexecute() gives the flash loan wrapper contract (FLaavev2 , FLDyDx) the permission to execute functions on
behalf of the user’s psproxy . This execution permission is revoked only after the entire recipe execution is finished, which means that in case that any of the external
calls along the recipe execution is malicious, it might call executeaction() back and inject any task it wishes (e.g. take user’s funds out, drain approved tokens, etc)

Examples

code/contracts/actions/flashloan/FLAaveV2.s0l:L105-L136

function executeOperation(
address|[] memory _assets,
uint256[] memory _amounts,
uint256[] memory _fees,
address _initiator,
bytes memory _params
) public returns (bool) {
require(msg.sender == AAVE_LENDING_POOL, ERR_ONLY_AAVE_CALLER);
require(_initiator == address(this), ERR_SAME_CALLER);

(Task memory currTask, address proxy) = abi.decode(_params, (Task, address));

for (uint256 i = @; i < _assets.length; ++i) {
_assets[i].withdrawTokens(proxy, _amounts[i]);

}

address payable taskExecutor = payable(registry.getAddr(TASK_EXECUTOR_ID));

IDSProxy(proxy).execute{value: address(this).balance}(
taskExecutor,
abi.encodeWithSelector (CALLBACK_SELECTOR, currTask, bytes32(_amounts[@] + _fees[0]))

)

for (uint256 i = @; i < _assets.length; i++) {
_assets[i].approveToken(address(AAVE_LENDING_POOL), _amounts[i] + _fees[i]);
}

return true;

https://github.com/DecenterApps/defisaver-v3-contracts/commit/478e9cdc586ab669cf9ef69222f8886b4771d163

Recommendation

A reentrancy guard (mutex) that covers the entire content of FLAavev2.executeoperation / FLDyDx.callFunction Should be used to prevent such attack.

5.2 Tokens with more than 18 decimal points will cause issues g [Vres

Resolution

Fixed in DecenterApps/defisaver-v3-contracts@ de22007 by using safemath.sub to revert on tokens with Decimal > 18

Description

It is assumed that the maximum number of decimals for each token is 18. However uncommon, but it is possible to have tokens with more than 18 decimals, as an
Example YAMv2 has 24 decimals. This can result in broken code flow and unpredictable outcomes (e.g. an underflow will result with really high rates).

Examples

® contracts/exchangeV3/wrappersV3/KyberWrapperV3.sol

function getSellRate(address _srcAddr, address _destAddr, uint _srcAmount, bytes memory) public override view returns (uint rate) {
(rate,) = KyberNetworkProxyInterface(KYBER_INTERFACE)
.getExpectedRate(IERC20(_srcAddr), IERC26(_destAddr), _srcAmount);

rate = rate * (10**(18 - getDecimals(_srcAddr)));

rate rate / (10*%(18 - getDecimals(_destAddr)));

® code/contracts/views/AaveView.sol : also used in getLoanData()
Recommendation

Make sure the code won’t fail in case the token’s decimals is more than 18.

5.3 Error codes of Compound’s Comptroller.enterMarket, Comptroller.exitMarket are not checked =m (v

Resolution

Fixed in DecenterApps/defisaver-v3-contracts@ 7e7se49 by reverting in the case the return value is non zero.

Description

Compound’s enterMarket/exitMarket functions return an error code instead of reverting in case of failure. DeFi Saver smart contracts never check for the error codes
returned from Compound smart contracts, although the code flow might revert due to unavailability of the CTokens, however early on checks for Compound errors
are suggested.

Examples

code/contracts/actions/compound/helpers/CompHelper.sol:L26-L37

function enterMarket(address _cTokenAddr) public {
address[] memory markets = new address[](1);
markets[0] = _cTokenAddr;

IComptroller (COMPTROLLER_ADDR) .enterMarkets(markets);

function exitMarket(address _cTokenAddr) public {
IComptroller (COMPTROLLER_ADDR) .exitMarket(_cTokenAddr);

}

Recommendation

Caller contract should revert in case the error code is not O.

5.4 Reversed order of parameters in allowance function call wedium [¥Fxea

Resolution

Fixed in DecenterApps/defisaver-v3-contracts@ sbses7b by swapping the order of function call parameters.

Description

When trying to pull the maximum amount of tokens from an approver to the allowed spender, the parameters that are used for the aliowance function call are not in
the same order that is used later in the call to safeTransferFrom .

Examples

code/contracts/utils/TokenUtils.sol:L26-L44

https://github.com/DecenterApps/defisaver-v3-contracts/commit/de220072cf0fd507f8b600ee60fb972fea7ce567
https://etherscan.io/token/0xaba8cac6866b83ae4eec97dd07ed254282f6ad8a
https://github.com/DecenterApps/defisaver-v3-contracts/commit/7075e490bde07ad82fe8b904eea1c076c7efe391
https://github.com/DecenterApps/defisaver-v3-contracts/commit/8b5657bd6c6314c29ef6cd7407517f6f5efb440b

function pullTokens(
address _token,
address _from,
uint256 _amount
) internal returns (uint256) ({
// handle max uint amount
if (_amount == type(uint256).max) {
uint256 allowance = IERC20(_token).allowance(address(this), _from);
uint256 balance = getBalance(_token, _from);

_amount = (balance > allowance) ? allowance : balance;

if (_from != address(@) && _from != address(this) && _token != ETH_ADDR && _amount != 0) {
IERC20(_token).safeTransferFrom(_from, address(this), _amount);

}

return _amount;

Recommendation

Reverse the order of parameters in allowance function call to fit the order that is in the safeTransferFrom function call.

5.5 Full test suite is recommended widiim pending

Description

The test suite at this stage is not complete and many of the tests fail to execute. For complicated systems such as DeFi Saver, which uses many different modules
and interacts with different DeFi protocols, it is crucial to have a full test coverage that includes the edge cases and failed scenarios. Especially this helps with safer
future development and upgrading each modules.

As we've seen in some smart contract incidents, a complete test suite can prevent issues that might be hard to find with manual reviews.

Some issues such as issue 5.4 could be caught by a full coverage test suite.

5.6 Kyber getRates code is unclear gz

Description

In contracts/exchangeV3/wrappersV3/KyberWrapperv3.sol the function names don't reflect their true functionalities, and the code uses some undocumented assumptions.

Examples

e getSellRate Can be converted into one function to get the rates, which then for buy or sell can swap input and output tokens

® getBuyRate USes a 3% slippage that is not documented.

function getSellRate(address _srcAddr, address _destAddr, uint _srcAmount, bytes memory) public override view returns (uint rate) {
(rate,) = KyberNetworkProxyInterface(KYBER_INTERFACE)
.getExpectedRate(IERC20(_srcAddr), IERC20(_destAddr), _srcAmount);

// multiply with decimal difference in src token
rate = rate * (10**(18 - getDecimals(_srcAddr)));
// divide with decimal difference in dest token
rate = rate / (10**(18 - getDecimals(_destAddr)));

/// @notice Return a rate for which we can buy an amount of tokens

/// @param _srcAddr From token

/// @param _destAddr To token

/// @param _destAmount To amount

/// @return rate Rate

function getBuyRate(address _srcAddr, address _destAddr, uint _destAmount, bytes memory _additionalData) public override view returns (uint rate) {
uint256 srcRate = getSellRate(_destAddr, _srcAddr, _destAmount, _additionalData);
uint256 srcAmount = wmul(srcRate, _destAmount);

rate = getSellRate(_srcAddr, _destAddr, srcAmount, _additionalData);

// increase rate by 3% too account for inaccuracy between sell/buy conversion
rate = rate + (rate / 30);

Recommendation

Refactoring the code to separate getting rate functionality with getsellrate and getBuyrate . EXplicitly document any assumptions in the code (slippage, etc)

5.7 Missing check in I0ffchainWrapper.takeOrder implementation czm

Description

IoffchainWrapper.takeorder Wraps an external call that is supposed to perform a token swap. As for the two different implementations zeroxwrapper and scpwrapper this
function validates that the destination token balance after the swap is greater than the value before. However, it is not sufficient, and the user-provided minimum
amount for swap should be taken in consideration as well. Besides, the external contract should not be trusted upon, and safemath should be used for the
subtraction operation.

Examples

code/contracts/exchangeV3/offchainWrappersV3/ZeroxWrapper.sol:L42-L50

uint256 tokensBefore = _exData.destAddr.getBalance(address(this));

(success,) = _exData.offchainData.exchangeAddr.call{value: _exData.offchainData.protocolFee}(_exData.offchainData.callData);
uint256 tokensSwaped = 0;

if (success) {
// get the current balance of the swaped tokens
tokensSwaped = _exData.destAddr.getBalance(address(this)) - tokensBefore;
require(tokensSwaped > 0, ERR_TOKENS_SWAPED_ZERO);

code/contracts/exchangeV3/offchainWrappersV3/ScpWrapper.sol:L43-L51

uint256 tokensBefore = _exData.destAddr.getBalance(address(this));

(success,) = _exData.offchainData.exchangeAddr.call{value: _exData.offchainData.protocolFee}(_exData.offchainData.callData);
uint256 tokensSwaped = 0;

if (success) {
// get the current balance of the swaped tokens
tokensSwaped = _exData.destAddr.getBalance(address(this)) - tokensBefore;
require(tokensSwaped > 0, ERR_TOKENS_SWAPED_ZERO) ;

5.8 Unused code present in the codebase grm

Resolution

Some of the unused code were removed in DecenterApps/defisaver-v3-contracts@ 61beces .

Description
There are a few instances of unused code (dead code) in the code base, that is suggested to be removed .
Examples

® DFSExchange.sol contract is not used

® /contracts/utils/ZrxAllowlist.sol these functions are not used in the codebase:

O nonPayableAddrs Mapping
addNonPayableAddr()
removeNonPayableAddr()
isNonPayableAddr()

o

o

o

® DSProxy.execute(bytes memory _code, bytes memory _data) iS not intended to used.

There might be more instances of unused code in the codebase.

5.9 Return values not used for DFSExchangeCore.onChainSwap o

Description
Return values from DFSExchangeCore.onChainSwap are not used.
Examples

code/contracts/exchangeV3/DFSExchangeCore.sol:L37-L73

https://github.com/DecenterApps/defisaver-v3-contracts/commit/61b0c09181a165cd3aee49df80bbb5f0b519301f

function _sell(ExchangeData memory exData) internal returns (address, uint256) {
uint256 amountWithoutFee = exData.srcAmount;
address wrapper = exData.offchainData.wrapper;
bool offChainSwapSuccess;

uint256 destBalanceBefore = exData.destAddr.getBalance(address(this));

// Takes DFS exchange fee

exData.srcAmount -= getFee(
exData.srcAmount,
exData.user,
exData.srcAddr,
exData.dfsFeeDivider

// Try 6x first and then fallback on specific wrapper
if (exData.offchainData.price > 0) {
(offChainSwapSuccess,) = offChainSwap(exData, ExchangeActionType.SELL);

// fallback to desired wrapper if Ox failed

if (!offChainSwapSuccess) {
onChainSwap(exData, ExchangeActionType.SELL);
wrapper = exData.wrapper;

uint256 destBalanceAfter = exData.destAddr.getBalance(address(this));
uint256 amountBought = sub(destBalanceAfter, destBalanceBefore);

// check slippage
require(amountBought >= wmul(exData.minPrice, exData.srcAmount), ERR_SLIPPAGE_HIT);

// revert back exData changes to keep it consistent
exData.srcAmount = amountWithoutFee;

return (wrapper, amountBought);

code/contracts/exchangeV3/DFSExchangeCore.sol:L79-L117

function _buy(ExchangeData memory exData) internal returns (address, uint256) {
require(exData.destAmount !'= @, ERR_DEST_AMOUNT_MISSING);

uint256 amountWithoutFee = exData.srcAmount;
address wrapper = exData.offchainData.wrapper;
bool offChainSwapSuccess;

uint256 destBalanceBefore = exData.destAddr.getBalance(address(this));

// Takes DFS exchange fee

exData.srcAmount -= getFee(
exData.srcAmount,
exData.user,
exData.srcAddr,
exData.dfsFeeDivider

// Try 6x first and then fallback on specific wrapper
if (exData.offchainData.price > 0) {
(offChainSwapSuccess,) = offChainSwap(exData, ExchangeActionType.BUY);

// fallback to desired wrapper if 6x failed

if ('offChainSwapSuccess) {
onChainSwap(exData, ExchangeActionType.BUY);
wrapper = exData.wrapper;

uint256 destBalanceAfter = exData.destAddr.getBalance(address(this));
uint256 amountBought = sub(destBalanceAfter, destBalanceBefore);

// check slippage
require(amountBought >= exData.destAmount, ERR_SLIPPAGE_HIT);

// revert back exData changes to keep it consistent
exData.srcAmount = amountWithoutFee;

return (wrapper, amountBought);

Recommendation

The return value can be used for verification of the swap or used in the event data.

5.0 Return value is not used for TokenUtils.withdrawTokens cmm (e

Resolution

Fixed in DecenterApps/defisaver-v3-contracts@ 3szdabff by storing the return value locally and use its value throughout the execution.

Description

The return value of Tokenutils.withdrawTokens Which represents the actual amount of tokens that were transferred is never used throughout the repository. This might
cause discrepancy in the case where the original value of _amount Was type(uint256).max .

Examples

https://github.com/DecenterApps/defisaver-v3-contracts/commit/37dabff

code/contracts/actions/aave/AaveBorrow.sol:L70-L97

function _borrow(
address _market,
address _tokenAddr,
uint256 _amount,
uint256 _rateMode,
address _to,

address _onBehalf
) internal returns (uint256) {
ILendingPoolV2 lendingPool = getlLendingPool(_market);

// defaults to onBehalf of proxy
if (_onBehalf == address(0)) {
_onBehalf = address(this);

}

lendingPool.borrow(_tokenAddr, _amount, _rateMode, AAVE_REFERRAL_CODE, _onBehalf);
_tokenAddr .withdrawTokens(_to, _amount);

logger.Log(
address(this),
msg.sender,
"AaveBorrow",

abi.encode(_market, _tokenAddr, _amount, _rateMode to, _onBehalf)

)

return _amount;

code/contracts/utils/TokenUtils.sol:L46-L53

function withdrawTokens(
address _token,
address _to,

uint256 _amount
) internal returns (uint256) {
if (_amount == type(uint256).max) {
_amount = getBalance(_token, address(this));

}

Recommendation

The return value can be used to validate the withdrawal or used in the event emitted.

5.11 Missing access control for DefiSaverLogger.Log

Description

DefiSaverLogger IS Used as a logging aggregator within the entire dapp, but anyone can create logs.
Examples

code/contracts/utils/DefisaverLogger.sol:L14-L21

function Log(
address _contract,
address _caller,
string memory _logName,
bytes memory _data
) public {
emit LogEvent(_contract, _caller, _logName, _data);

}

6 Recommendations

6.1 Use a single file for all system-wide constants

Description

There are many addresses and constants using in the system. It is suggested to put the most used ones in one file (e.g. constants.sol and use inheritance to access
these values. This will help with the readability and easier maintenance for future changes. As some of these hardcoded values are admin addresses, this also helps
with any possible incident response.

Examples
Logger:

e DFSRegistry

e TaskExecutor

e ActionBase

DefisaverLogger public constant logger = DefisaverlLogger(
0x5¢c55B921f590a89C1Ebe84dF170E655a82b62126

);

Admin Vault:

e AdminAuth

AdminVault public constant adminVault = AdminVault(@xCCf3d848e08b94478Ed8f46fFead3008faF581fD) ;

REGISTRY_ADDR

e SubscriptionProxy
e StrategyExecutor

e TaskExecutor

e ActionBase
address public constant REGISTRY_ADDR = 0xB0e1682D17A96E8551191c089673346dF7e1D467 ;

Any other constant in the system also can be moved to this contract.
Recommendation

Use constants.sol and import this file in the contracts that require access to these values. This is just a recommendation, as discussed with the team, on some use
cases this might result in higher gas usage on deployment.

6.2 Code quality & Styling
Description
Here are some examples that the code style does not follow the best practices:
Examples
e Public/external function names should not be prefixed with _

code/contracts/core/TaskExecutor.sol:L56
function _executeActionsFromFL(Task memory _currTask, bytes32 _flAmount) public payable {

e Function parameters are being overriden

code/contracts/exchangeV3/DFSExchange.sol:L24-L37

function sell(ExchangeData memory exData, address payable _user) public payable {

exData.dfsFeeDivider = SERVICE_FEE;
exData.user = _user;

// Perform the exchange
(address wrapper, uint destAmount) = _sell(exData);

// send back any leftover ether or tokens
sendLeftover(exData.srcAddr, exData.destAddr, _user);

// log the event
logger.Log(address(this), msg.sender, "ExchangeSell", abi.encode(wrapper, exData.srcAddr, exData.destAddr, exData.srcAmount, destAmount));

e max_SErRVICE_FEE Should be wmIN_SErRvICE_FEE

code/contracts/utils/Discount.sol:L28-L33

function setServiceFee(address _user, uint256 _fee) public {
require(msg.sender == owner, "Only owner");
require(_fee >= MAX_SERVICE_FEE || _fee == @, "Wrong fee value");

serviceFees[_user] = CustomServiceFee({active: true, amount: _fee});

e Functions with a get prefix should not modify state

code/contracts/exchangeV3/DFSExchangeCore.sol:L182-L206

function getFee(
uint256 _amount,
address _user,
address _token,
uint256 _dfsFeeDivider
) internal returns (uint256 feeAmount) {
if (_dfsFeeDivider != @ && Discount(DISCOUNT_ADDRESS).isCustomFeeSet(_user)) {
_dfsFeeDivider = Discount(DISCOUNT_ADDRESS).getCustomServiceFee(_user);
}

if (_dfsFeeDivider == 0) {
feeAmount = 0;
} else {
feeAmount = _amount / _dfsFeeDivider;

// fee can't go over 10% of the whole amount

if (feeAmount > (_amount / 10)) {
feeAmount = _amount / 10;

}
address walletAddr = feeRecipient.getFeeAddr();

_token.withdrawTokens(walletAddr, feeAmount);

e Protocol fee value should be validated against msg.value and not against contract’s balance

code/contracts/exchangeV3/offchainWrappersV3/ZeroxWrapper.sol:L25-L31

function takeOrder(
ExchangeData memory _exData,
ExchangeActionType _type

) override public payable returns (bool success, uint256) ({
// check that contract have enough balance for exchange and protocol fee
require(_exData.srcAddr.getBalance(address(this)) >= _exData.srcAmount, ERR_SRC_AMOUNT) ;
require(TokenUtils.ETH_ADDR.getBalance(address(this)) >= _exData.offchainData.protocolFee, ERR_PROTOCOL_FEE);

e Remove deprecation warning (originated in OpenZeppelin’s implementation) in comment, as the issue has been solved

code/contracts/utils/SafeERC20.sol:L33-L44

VEX
* @dev Deprecated. This function has issues similar to the ones found in
* {ERC20-approve}, and its usage is discouraged.
*/
function safeApprove(
IERC20 token,
address spender,
uint256 value
) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));

e Typo Rrecrpie_ree instead of RECIPE_FEE

code/contracts/actions/exchange/DfsSell.sol:L15

uint internal constant RECIPIE_FEE = 400;

e Code duplication : sendLeftover is identical both in uniswapwrapperva and in kyberwrappervs , and thus can be shared in a base class.

code/contracts/exchangeV3/wrappersV3/KyberWrapperV3.sol:L127-L133

function sendLeftOver(address _srcAddr) internal {
msg.sender.transfer(address(this).balance);

if (_srcAddr !'= KYBER_ETH_ADDRESS) {
IERC20(_srcAddr).safeTransfer(msg.sender, IERC20(_srcAddr).balanceOf(address(this)));

e Code duplication : siicevint function is identical both in DbFsexchangeHelper and in brFsprices
® DFSPricesV3.getBestPrice , DFSPricesV3.getExpectedRate should be view functions
e Fix the code comments from user borrows tokens to 1O User borrows tokens from

code/contracts/actions/aave/AaveBorrow.sol:L63-L77

/// @notice User borrows tokens to the Aave protocol
/// @param _market Address provider for specific market
/// @param _tokenAddr The address of the token to be borrowed
/// @param _amount Amount of tokens to be borrowed
/// @param _rateMode Send 1 for stable rate and 2 for variable
/// @param _to The address we are sending the borrowed tokens to
/// @param _onBehalf From what user we are borrow the tokens, defaults to proxy
function _borrow(

address _market,

address _tokenAddr,

uint256 _amount,

uint256 _rateMode,

address _to,

address _onBehalf
) internal returns (uint256) {

code/contracts/actions/compound/CompBorrow.sol:L51-L59

/// @notice User borrows tokens to the Compound protocol
/// @param _cTokenAddr Address of the cToken we are borrowing
/// @param _amount Amount of tokens to be borrowed
/// @param _to The address we are sending the borrowed tokens to
function _borrow(

address _cTokenAddr,

uint256 _amount,

address _to
) internal returns (uint256) {

® IExchangeV3.sell , IExchangev3.buy Should not be payable
® TaskExecutor._executeAction Should not forward contract’s balance within the 1psproxy.execute call, as the funds are being sent to the same contract.

code/contracts/core/TaskExecutor.sol:L90-L105

function _executeAction(
Task memory _currTask,
uint256 _index,
bytes32[] memory _returnValues
) internal returns (bytes32 response) {
response = IDSProxy(address(this)).execute{value: address(this).balance}(
registry.getAddr(_currTask.actionIds[_index]),
abi.encodeWithSignature(
"executeAction(bytes[],bytes[],uint8[],bytes32[])",
_currTask.callData[_index],
_currTask.subData[_index],
_currTask.paramMapping[_index],
_returnValues

e Unsafe arithmetic operations

code/contracts/actions/compound/CompClaim.sol:L73

uint256 compClaimed = compBalanceAfter - compBalanceBefore;

code/contracts/actions/compound/CompWithdraw.sol:L84

_amount = tokenBalanceAfter - tokenBalanceBefore;

code/contracts/actions/uniswap/UniSupply.sol:L82-L83

_uniData.tokenA.withdrawTokens(_uniData.to, (_uniData.amountADesired - amountA));
_uniData.tokenB.withdrawTokens(_uniData.to, (_uniData.amountBDesired - amountB));

code/contracts/actions/flashloan/FLAaveV2.s0l:L125-L133

IDSProxy(proxy) .execute{value: address(this).balance}(
taskExecutor,
abi.encodeWithSelector (CALLBACK_SELECTOR, currTask, bytes32(_amounts[@] + _fees[0]))

);

// return FL

for (uint256 i = @; i < _assets.length; i++) {
_assets[i].approveToken(address(AAVE_LENDING_POOL), _amounts[i] + _fees[i]);

}

code/contracts/exchangeV3/DFSExchangeCore.sol:L45

exData.srcAmount -= getFee(

code/contracts/exchangeV3/offchainWrappersV3/ZeroxWrapper.sol:L48

tokensSwaped = _exData.destAddr.getBalance(address(this)) - tokensBefore;

6.3 Gas optimization

Description

Use address(this) instead of external call for registry when possible.

Examples

code/contracts/actions/flashloan/FLAaveV2.sol:L82-L102

function _flAaveV2(FLAaveV2Data memory _flData, bytes memory _params) internal returns (uint) {

ILendingPoolV2 (AAVE_LENDING_POOL) .flashLoan(
payable(registry.getAddr(FL_AAVE_V2_ID)),
_flData.tokens,

_flData.amounts,
_flData.modes,
_flData.onBehalfOf,
_params,
AAVE_REFERRAL_CODE

)

logger.Log(
address(this),
msg.sender,
"FLAaveV2",
abi.encode(_flData.tokens, _flData.amounts, _flData.modes, _flData.onBehalfOf)

)

return _flData.amounts[0];

code/contracts/actions/flashloan/dydx/FLDyDx.sol:L76-L107

function _f1DyDx(
uint256 _amount,
address _token,
bytes memory _data
) internal returns (uint256) ({

address payable receiver = payable(registry.getAddr(FL_DYDX_ID));

ISoloMargin solo = ISoloMargin(SOLO_MARGIN_ADDRESS) ;

uint256 marketId

uint256 repayAmount = _getRepaymentAmountInternal(_amount);

IERC20(_token) .safeApprove(SOLO_MARGIN_ADDRESS,

repayAmount) ;

_getMarketIdFromTokenAddress(SOLO_MARGIN_ADDRESS, _token);

Actions.ActionArgs[] memory operations = new Actions.ActionArgs[](3);

_getWithdrawAction(marketId, _amount,
_getCallAction(_data, receiver);
_getDepositAction(marketId,

operations[0]
operations[1]
operations[2]

Account.Info[] memory accountInfos = new Account.Info[](1);

accountInfos[@] = _getAccountInfo();
solo.operate(accountInfos, operations);
logger.Log(address(this), msg.sender,

return _amount;

Appendix 1 - Files in Scope
This audit covered the following files:

File Name
contracts/auth/AdminVault.sol
contracts/auth/AdminAuth.sol
contracts/auth/ProxyPermission.sol
contracts/core/TaskExecutor.sol
contracts/core/DFSRegistry.sol
contracts/utils/SafeERC20.sol
contracts/utils/Discount.sol
contracts/utils/FeeRecipient.sol
contracts/utils/FLFeeFaucet.sol
contracts/utils/Exponential.sol
contracts/utils/SafeMath.sol
contracts/utils/Address.sol
contracts/utils/ZrxAllowlist.sol
contracts/utils/DFSProxyRegistry.sol
contracts/utils/DefisaverLogger.sol
contracts/utils/TokenUtils.sol
contracts/utils/CarefulMath.sol
contracts/exchangeV3/DFSExchangeHelper.sol
contracts/exchangeV3/wrappersV3/KyberWrapperV3.sol
contracts/exchangeV3/offchainWrappersV3/ScpWrapper.sol
contracts/exchangeV3/wrappersV3/UniswapWrapperV3.sol
contracts/exchangeV3/DFSExchangeCore.sol
contracts/exchangeV3/DFSExchangeData.sol
contracts/exchangeV3/DFSExchange.sol
contracts/exchangeV3/DFSPricesV3.sol
contracts/exchangeV3/SaverExchangeRegistry.sol
contracts/exchangeV3/offchainWrappersV3/ZeroxWrapper.sol
contracts/actions/utils/UnwrapEth.sol
contracts/actions/utils/PullToken.sol
contracts/actions/utils/Sumlnputs.sol
contracts/actions/exchange/DfsSell.sol

contracts/actions/flashloan/FLAaveV2.sol

receiver);

repayAmount, address(this));

"FLDyDx", abi.encode(_amount, _token));

SHA-1 Hash
Obcc845ec8e2d927ca7ade0ab31471083cd798a5
ebe4c9219e473983df73569bed7b84008d0b0251
cee91dbdd730811837a25ee92868e090ffb5220e
1a456a05404bb5b9bffda2ee8d726e62b777c644
19f2678b2d7795f2d579644db14f0e2686792c1c
9411f7bd95ba807e0a125219497b9b8be42f0446
d9495bfb48bf8251143a1a30bd845593e9488e11
eae0bfOc1b0abc1250be6fa49b96924226669d2e
6ff7e59b32e184ff66fdd1c27c5fdc76f721564d
aa4098007240494f375dd3533b5d02d5bdd4d8b4
4381feeda6079de2addc7e267657a4ef2658dc6e
24762c686cd3cf849197cd912858226a774b5ebe
f20a47bb1be3272d5e8954a040c62a89612b5dfc
d541d59864694dd6b19187c9e4231286afce961c
d2362e116¢c43593168d2c00adb7472a916230d63
492839d9ac138304af554933db621c2d5bdf8550
327ed2e92a98e57759da3e8e41e3c28a6128c169
19ead7a237a35f86e7cbb5f66b2cf374f2900534
294efb5079e81052bcc682062dae28d45096b989
1c3¢c20a94a49e03829¢c701e1fa0ae9fb75895449
f845341af105f8dc456a03ada15b58119dbd38e0
cf1bb7f3e692300404ac8cde83f9c1fb50e2b594
50cf9d3288b28032878d737040353fc97407976b
424120fc97700cb4046928ec99db3b789bf86199
8d9ealacObd63af56cc53d8f38fdad10f8854c6a
79708bca57219b8178a404b9afe18d6a143c648a
bf63611a717b7991fc8d23682fc0688afb8a906e
90ff17831ee096c413af2cae007139fc3730e5¢chb
4692b288725331186447185¢cbb5eb1b32485ad10
edd5622e65882938d9c4f3425b049101c659e70d
d6e7df7045af542fea38a8a95e4dd443b2beOf64

f5383042870d142684a5a78c36046a37b0a73b84

File Name
contracts/actions/ActionBase.sol
contracts/actions/exchange/DFSBuy.sol
contracts/actions/uniswap/UniWithdraw.sol
contracts/actions/uniswap/UniSupply.sol

contracts/actions/utils/WrapEth.sol

contracts/actions/flashloan/dydx/DydxFlashLoanBase.sol

contracts/actions/compound/CompWithdraw.sol

contracts/actions/flashloan/dydx/FLDyDx.sol
contracts/actions/utils/SendToken.sol
contracts/actions/aave/AaveSupply.sol
contracts/actions/mcd/McdMerge.sol
contracts/actions/aave/AaveWithdraw.sol
contracts/actions/mcd/McdPayback.sol
contracts/actions/aave/AaveBorrow.sol
contracts/actions/compound/CompBorrow.sol
contracts/actions/compound/CompSupply.sol
contracts/actions/aave/AavePayback.sol
contracts/actions/compound/CompPayback.sol
contracts/actions/mcd/McdGenerate.sol
contracts/actions/mcd/McdGive.sol
contracts/actions/mcd/McdWithdraw.sol
contracts/actions/aave/helpers/AaveHelper.sol
contracts/actions/mcd/McdSupply.sol
contracts/actions/mcd/McdOpen.sol

contracts/actions/compound/CompClaim.sol

SHA-1 Hash
86e3425f0160a86d6fbe3b7293fd2220d160721a
57d296223fb587b92dd1bb61aa3d7¢c931ae41433
6358c7ceec12b52a7d75bd37a2e8ac90dca95da0
2d670ef9f9a4cc83bdef2ac54bef88a3cfcdefce
79ec4b231dac21feedf28d2e8cf2bae8e7a87fe4
9a40f771ef6397f97e68335e26f6283403371934
dfadbb93dbb3fOaceld5ee2eb2247e7ed0d85472
888d35f3a97a003737f93e360ec46ballfacb93b
laald4b8e241e0ffc62dfef14b900f614ab28461
55a00932fd4db3e6778dfOcafbfeaa0871db6fc6
b04431602f8a4429e38d1a486eb37bb8eab164a1
65c8dd23d6076edb4b13194c165¢c86563408f50e
b5fe10f2913e6adc4c56e1397fe819574a814a3f
1b43deelbeOabaeebab7febd0e85e24f77efe99d
170c9e7b40601fcd0389f91803675eb6fbebe616
30c45f093217173853b8a09¢cb97505f8a53eb0ce
a8f56e6bdbd17c6131edc2b7e81c910ba821af03
Oac2f420cdb306d0ae2ef9150944d9a719484fdc
fad58d9b6de75694dffafalebf7d8bba2995d243
8e50727a34b43030d928fba26f3183ed594e67d1
a93b467709942a900cbb3d8d366bafb6c2607959
3d299853e11e07aa19f3839c4bb57644781a1838
6f49b4069839834bf643273cbeb64a6b945775ce
dc8051109bf037f0532f565f7ca139f55bb9fcce

e1621308e26ce316fbfdecdd651cd18243e5b908

contracts/actions/compound/helpers/CompHelper.sol 6¢c2699e4dd873cal36c22cleeeeaacfe3d2d8860f

contracts/actions/mcd/helpers/McdHelper.sol Offea9e971bee2cb573ea8f6b344e2feba3fff32

The following files were looked at to understand the overall system but are not in the scope:

File Name SHA-1 Hash
contracts/DS/DSProxyFactorylnterface.sol f2366ee831535db0216213177b71c591af775dd8

contracts/DS/DSMath.sol 582030753e6d2682bb1104d175¢c09ce10a55e217

contracts/DS/DSGuard.sol 33221642c289acb219b35df3e5¢9223ee6c59677

contracts/DS/DSAuthority.sol af4795dfcdf38101b1d1b5543bf5baa726bbe722

contracts/DS/DSProxy.sol cbc0b52690cbde8540f411faa1933317116d6e9b

contracts/DS/DSNote.sol d27a91dd0123f3793ec6d437dc40bf1cb66957f5

contracts/DS/DSAuth.sol 3dfOea67a517b9ac3d60d454a3d3fe77fb80534a

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the security of any particular project. This
Report does not consider, and should not be interpreted as considering or having any bearing on, the potential economics of a token, token sale or any other
product, service or other asset. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report
provides any warranty or representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or proprietors of any
such business model, and the legal compliance of any such business. No third party should rely on the Reports in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset. Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the project.
CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our review is
limited to a review of Solidity code and only the Solidity code we note as being within the scope of our review within this report. The Solidity language itself
remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond Solidity that
could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making these analyses publicly available, it
can help the blockchain ecosystem develop technical best practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites operated by persons other than
ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’ owners. You

agree that ConsenSys and CD are not responsible for the content or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any
other person or entity for the use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports. ConsenSys and CD assumes no responsibility for the use of third party
software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such
software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice. Unless
indicated otherwise, by ConsenSys and CD.

rowereo 8y Y CONSENSYS

https://consensys.net/

