
Date January 2020

Lead Auditor Alexander Wade

Co-auditors Daniel Luca, Martin Ortner

Omisego Morevp Audit

1 Summary

2 Audit Scope

3 Key Observations/Recommendations

4 Security Speci�cation
4.1 Actors

4.2 Trust Model

5 Issues
5.1 Merkle.checkMembership allows existence proofs for the same leaf in
multiple locations in the tree Critical ✓ Addressed

5.2 Improper initialization of spending condition abstraction allows “v2
transactions” to exit using PaymentExitGame Major ✓ Addressed

5.3 RLPReader - Leading zeroes allow multiple valid encodings and exit / output
ids for the same transaction Major ✓ Addressed

5.4 Recommendation: Remove TxFinalizationModel and
TxFinalizationVerifier . Implement stronger checks in Merkle Medium

5.5 Merkle - The implementation does not enforce inclusion of leaf nodes. Medium

✓ Addressed

5.6 Maintainer can bypass exit game quarantine by registering not-yet-deployed
contracts Medium ✓ Addressed

5.7 EthVault - Unused state variable Minor ✓ Addressed

5.8 Recommendation: Add a tree height limit check to Merkle.sol Minor

5.9 Recommendation: remove IsDeposit and add a similar getter to
BlockController Minor ✓ Addressed

5.10 Recommendation: Merge TxPosLib into UtxoPosLib and implement a
decode function with range checks. Minor

5.11 Recommendation: Implement additional existence and range checks on
inputs and storage reads Minor

5.12 Recommendation: Remove optional arguments and clean unused code
Minor ✓ Addressed

5.13 Recommendation: Remove WireTransaction and PaymentOutputModel .
Fold functionality into an extended PaymentTransactionModel Minor

5.14 ECDSA error value is not handled Minor ✓ Addressed

5.15 No existence checks on framework block and timestamp reads Minor

✓ Addressed

5.16 BondSize - effectiveUpdateTime should be uint64 Minor

5.17 PaymentExitGame contains several redundant plasmaFramework
declarations Minor

5.18 BlockController - inaccurate description of childBlockInterval for
submitDepositBlock Minor

5.19 PlasmaFramework - Can omit inheritance of VaultRegistry Minor

5.20 BlockController - maintainer should be the only entity to set new authority
Minor ✓ Addressed

Appendix 1 - Scope

Appendix 2 - Disclosure

1 Summary

ConsenSys Diligence conducted a security audit of OmiseGo’s plasma framework
contracts. The contracts are their implementation of More Viable Plasma (MoreVP), which
is based on Minimal Viable Plasma (MVP). MoreVP aims to improve on Plasma’s UX by
getting rid of MVP’s con�rmation signatures in favor of a more involved exit game.

Diligence performed a secondary review of the plasma contracts following OmiseGo’s
implementation of fee transaction types as well as their inclusion of �xes from our initial
review.

2 Audit Scope

Our review was concerned primarily with the smart contracts in OmiseGo’s plasma-
contracts repository. We began our review at commit
e13aaf759c979cf6516c1d8de865c9e324bc2db6.

Our subsequent review began at commit
9d79e35811a483277d4cd8b06b1678efc9f33151.

https://github.com/omisego/plasma-contracts
https://github.com/omisego/plasma-contracts/commit/e13aaf759c979cf6516c1d8de865c9e324bc2db6
https://github.com/omisego/plasma-contracts/commit/9d79e35811a483277d4cd8b06b1678efc9f33151

A complete list of Solidity �les reviewed can be found in the appendix.

3 Key Observations/Recommendations

The bulk of the code (~80%) is concerned with the MoreVP exit game. Of this code,
large portions of many contracts are irrelevant to the intended behavior of the system:
boilerplate and leftovers from unused extensibility features.

The inclusion of this code makes it di�cult to understand many components.
Code is spread across a sprawling �le structure, and understanding individual
features involves hopping between �les frequently.

The unused code may have unintended side effects. External calls and
delegatecalls are often made. Memory is frequently allocated without cause.
Functions often have more parameters than they use. It may be that these affect
the function of the contracts in some subtle way.

Update: Since our initial review, signi�cant refactoring has removed much of the
unused code initially found. In particular, the removal of unused parameters and
features like the output guard handler made it easier to reason about the code
(see 5.12).

Many future features are planned, but not yet implemented. The extensibility features
mentioned above are meant to support new features when they are released, but,
crucially, will never serve a purpose in the existing system post-deployment. Assuming
the system is deployed and initialized correctly, the extensibility features in the existing
codebase will never be active.

Instead, future features will be added via the registration of new exit games and
vaults. This process involves a quarantine period whereby users can ensure that
new features are understood and audited before being used. The quarantine
period is based on the minimum exit period, so that users are free to opt-out via
exit before any new features become active.

Some future features are represented in the current system. Of note is plasma
transaction fees, which are represented in the exit state transition veri�er contract.
This contract checks that the sum of the denominations of each input is greater
than or equal to the sum of the denominations of each output. Should fees not be
implemented, this representation is incorrect and could lead to invalid
transactions exiting successfully.

Update: Since our initial review, transaction fees have been implemented and
included in the smart contracts as �rst-class citizens. However, the contracts are
still highly complex due to heavy use of abstractions and a complicated
transaction decoding scheme. The potential to enable future transaction types
and decoding schemes plays a large role in obfuscating the business logic of the
contracts. This obfuscation is magni�ed by the codebase’s aforementioned
sprawling �le structure and relative lack of code commenting. Further work should
attempt to limit this sprawl and focus on making implementation details more
clear.

Because MoreVP does not use con�rmation signatures, verifying a transaction’s
validity is nearly impossible in the resource-constrained environment of the EVM. To
get around this limitation, MoreVP allows invalid transactions to be exited. In order to
avoid losing funds, users must be sure that they are running the child chain watcher,
and that it is correctly con�gured to notify them of byzantine scenarios.

As a safeguard to the potential exiting of invalid transactions, users can perform a
mass exit. In this case, the gas cost required to exit each UTXO is a critically-
important bottleneck. Should a mass exit be too resource-intensive, the network
may be clogged up and invalid transactions may be exited successfully. Future
work on this codebase should make additional steps to ensure that exit game
implementations are as e�cient as possible.

Update: As with any highly-complex system, it is impossible to account for every
possibility before launching. Our review was primarily concerned with the plasma
smart contracts as the critical point of infrastructure, but left other important
components nearly untouched. Of particular note is the implementation of the child
chain watcher (and its integration with the plasma chain), which serves as a crucial
safeguard for users during production.

Our review uncovered several issues in a highly complex codebase, and more were
uncovered by OmiseGo’s development team during the engagement. We highly
recommend proceeding with caution: rather than pushing immediately for a full-
scale production release, a testnet, public bug bounty, limited release, or a
combination of all of these would allow OmiseGo to work out the kinks of the
system before it reaches critical mass.

4 Security Speci�cation

This section describes, from a security perspective, the expected behavior of the system
under audit. It is not a substitute for documentation. The purpose of this section is to
identify speci�c security properties that were validated by the audit team.

4.1 Actors

The relevant actors are as follows:

Operator: Runs the child chain and submits child chain blocks to the
PlasmaFramework contract.

Maintainer: An address controlled by OmiseGo that has permissions to enable some
extensibility features in the root chain contracts.

Deployer: The address used to deploy the system’s contracts. Following deployment,
the deployer should revoke their permissions in some Ownable contracts.

User: An EOA that has deposited ERC20 or Ether into PlasmaFramework vaults. Users
hold assets in the child chain.

Watcher: A node that observes properties of the child chain and root chain contracts
and signals if a byzantine scenario is detected.

4.2 Trust Model

In any smart contract system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust model:

Deployment and Initialization

Before the plasma chain can start submitting blocks to the root chain contract, it must be
deployed and initialized correctly. That the contracts are correctly initialized is crucial. The
safety of many system components rely on the revocation of permissions post-
initialization, as well as the correct injection of parameters into each contract constructor.

PlasmaFramework.constructor - minExitPeriod

The minimum exit period should be 1 week

PlasmaFramework.constructor - vault and exit game immunities

PlasmaFramework should be initialized with 2 immunities for vaults, which should
be �lled during initialization by the erc20 and eth vaults.

PlasmaFramework should be initialized with 1 immunity for exit games, which
should be �lled during initialization by the PaymentExitGame contract, con�gured
with each of the components mentioned below.

OutputGuardHandlerRegistry and SpendingConditionRegistry

Following deployment, the owner of these contracts should revoke ownership by
transferring permissions to the zero address.

Only one payment output type should be registered in
OutputGuardHandlerRegistry .

Two spending conditions should be registered in SpendingConditionRegistry ,
with the same output type registered in OutputGuardHandlerRegistry , and two
different transaction types. These spending conditions should be separately-
deployed instances of PaymentOutputToPaymentTxCondition.sol .

Update: The OutputGuardHandlerRegistry was removed after refactoring
suggested in 5.12.

PaymentExitGame.constructor (args)

ethVaultId and erc20VaultId should be the deployed EthVault.sol and
ERC20Vault.sol contracts. They should be different addresses. Each should be

initialized with the correct deposit veri�er contract.

outputGuardHandlerRegistry , spendingConditionVerifier ,
stateTransitionVerifier , and txFinalizationVerifier should be the

deployed OutputGuardHandlerRegistry.sol ,
SpendingConditionRegistry.sol ,
PaymentTransactionStateTransitionVerifier.sol , and
TxFinalizationVerifier.sol

Update: The OutputGuardHandlerRegistry was removed after refactoring
suggested in 5.12.

User Behavior

The safety of the system relies in large part on vigilant monitoring and decisive action on
the part of the system’s users. Users should be running the child chain watcher, which
monitors the plasma chain and main chain contracts to alert the user if an exit is needed. In
the event of a byzantine operator or some discovered �aw, it is critical that users be able to
exit quickly and correctly.

The watcher should monitor registered exit games and vaults, and alert users if a new
exit game is registered. Users should examine each registered exit game to ensure it
complies with their expectations of the system.

The watcher should be used by as many users as is feasible.

In the event that an exit is needed, users must be able to coordinate and exit safely.

5 Issues

Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should
be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �xed.

5.1 Merkle.checkMembership allows existence proofs for the same
leaf in multiple locations in the tree Critical ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#533 by including a check in
PosLib that restricts transaction indices to between 0 and 2**16 - 1 inclusive. A

subsequent change in omisego/plasma-contracts#547 ensured the passed-in index
satis�ed the recommended criterion.

Description

checkMembership is used by several contracts to prove that transactions exist in the child
chain. The function uses a leaf , an index , and a proof to construct a hypothetical

https://github.com/omisego/plasma-contracts/pull/533
https://github.com/omisego/plasma-contracts/pull/547

root hash. This constructed hash is compared to the passed in rootHash parameter. If the
two are equivalent, the proof is considered valid.

The proof is performed iteratively, and uses a pseudo-index (j) to determine whether the
next proof element represents a “left branch” or “right branch”:

code/plasma_framework/contracts/src/utils/Merkle.sol:L28-L41

If j is even, the computed hash is placed before the next proof element. If j is odd, the
computed hash is placed after the next proof element. After each iteration, j is decremented
by j = j / 2 .

Because checkMembership makes no requirements on the height of the tree or the size of
the proof relative to the provided index , it is possible to pass in invalid values for index
that prove a leaf’s existence in multiple locations in the tree.

Examples

By modifying existing tests, we showed that for a tree with 3 leaves, leaf 2 can be proven to
exist at indices 2, 6, and 10 using the same proof each time. The modi�ed test can be found
here: https://gist.github.com/wadeAlexC/01b60099282a026f8dc1ac85d83489fd#�le-
merkle-test-js-L40-L67

it('should accidentally allow different indices to use the same proof', async () =>
 const rootHash = this.merkleTree.root;

uint256 j = index;
// Note: We're skipping the first 32 bytes of `proof`, which holds the size of
for (uint256 i = 32; i <= proof.length; i += 32) {
 // solhint-disable-next-line no-inline-assembly
 assembly {
 proofElement := mload(add(proof, i))
 }
 if (j % 2 == 0) {
 computedHash = keccak256(abi.encodePacked(NODE_SALT, computedHash, pro
 } else {
 computedHash = keccak256(abi.encodePacked(NODE_SALT, proofElement, com
 }
 j = j / 2;
}

https://gist.github.com/wadeAlexC/01b60099282a026f8dc1ac85d83489fd#file-merkle-test-js-L40-L67

 const proof = this.merkleTree.getInclusionProof(leaves[2]);

 const result = await this.merkleContract.checkMembership(
 leaves[2],
 2,
 rootHash,
 proof,
);
 expect(result).to.be.true;

 const nextResult = await this.merkleContract.checkMembership(
 leaves[2],
 6,
 rootHash,
 proof,
);
 expect(nextResult).to.be.true;

 const nextNextResult = await this.merkleContract.checkMembership(
 leaves[2],
 10,
 rootHash,
 proof,
);
 expect(nextNextResult).to.be.true;
});

Conclusion

Exit processing is meant to bypass exits processed more than once. This is implemented
using an “output id” system, where each exited output should correspond to a unique id that
gets �agged in the ExitGameController contract as it’s exited. Before an exit is
processed, its output id is calculated and checked against ExitGameController . If the
output has already been exited, the exit being processed is deleted and skipped. Crucially,
output id is calculated differently for standard transactions and deposit transactions:
deposit output ids factor in the transaction index.

By using the behavior described in this issue in conjunction with methods discussed in
issue 5.8 and issue 5.10, we showed that deposit transactions can be exited twice using

indices 0 and 2**16 . Because of the distinct output id calculation, these exits have
different output ids and can be processed twice, allowing users to exit double their
deposited amount.

A modi�ed StandardExit.load.test.js shows that exits are successfully enqueued with
a transaction index of 65536 :
https://gist.github.com/wadeAlexC/4ad459b7510e512bc9556e7c919e0965#�le-
standardexit-load-test-js-L55

Recommendation

Use the length of the proof to determine the maximum allowed index. The passed-in index
should satisfy the following criterion: index < 2**(proof.length/32) . Additionally,
ensure range checks on transaction position decoding are su�ciently restrictive (see issue
5.10).

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/546

5.2 Improper initialization of spending condition abstraction allows
“v2 transactions” to exit using PaymentExitGame Major ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#478 by requiring that
PaymentStartStandardExit and PaymentStartInFlightExit check the exiting

transaction’s transaction type.

Description

PaymentOutputToPaymentTxCondition is an abstraction around the transaction signature
check needed for many components of the exit games. Its only function, verify , returns
true if one transaction (inputTxBytes) is spent by another transaction

(spendingTxBytes):

code/plasma_framework/contracts/src/exits/payment/spendingConditions/PaymentOutputT
L69

https://gist.github.com/wadeAlexC/4ad459b7510e512bc9556e7c919e0965#file-standardexit-load-test-js-L55
https://github.com/omisego/plasma-contracts/issues/546
https://github.com/omisego/plasma-contracts/pull/478

Veri�cation process

The veri�cation process is relatively straightforward. The contract performs some basic
input validation, checking that the input transaction’s txType matches
supportInputTxType , and that the spending transaction’s txType matches
supportSpendingTxType . These values are set during construction.

function verify(
 bytes calldata inputTxBytes,
 uint16 outputIndex,
 uint256 inputTxPos,
 bytes calldata spendingTxBytes,
 uint16 inputIndex,
 bytes calldata signature,
 bytes calldata /*optionalArgs*/
)
 external
 view
 returns (bool)
{
 PaymentTransactionModel.Transaction memory inputTx = PaymentTransactionMod
 require(inputTx.txType == supportInputTxType, "Input tx is an unsupported

 PaymentTransactionModel.Transaction memory spendingTx = PaymentTransaction
 require(spendingTx.txType == supportSpendingTxType, "The spending tx is an

 UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.build(TxPosLib.TxPos(inputT
 require(
 spendingTx.inputs[inputIndex] == bytes32(utxoPos.value),
 "Spending tx points to the incorrect output UTXO position"
);

 address payable owner = inputTx.outputs[outputIndex].owner();
 require(owner == ECDSA.recover(eip712.hashTx(spendingTx), signature), "Tx

 return true;
}

Next, verify checks that the spending transaction contains an input that matches the
position of one of the input transaction’s outputs.

Finally, verify performs an EIP-712 hash on the spending transaction, and ensures it is
signed by the owner of the output in question.

Implications of the abstraction

The abstraction used requires several �les to be visited to fully understand the function of
each line of code: ISpendingCondition , PaymentEIP712Lib , UtxoPosLib , TxPosLib ,
PaymentTransactionModel , PaymentOutputModel , RLPReader , ECDSA , and
SpendingConditionRegistry . Additionally, the abstraction obfuscates the underlying

spending condition veri�cation primitive where used.

Finally, understanding the abstraction requires an understanding of how
SpendingConditionRegistry is initialized, as well as the nature of its relationship with
PlasmaFramework and ExitGameRegistry . The aforementioned txType values,
supportInputTxType and supportSpendingTxType , are set during construction. Their

use in ExitGameRegistry seems to suggest they are intended to represent different
versions of transaction types, and that separate exit game contracts are meant to handle
different transaction types:

code/plasma_framework/contracts/src/framework/registries/ExitGameRegistry.sol:L58-
L78

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protocol)
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit g
 require(_exitGames[_txType] == address(0), "The tx type is already registe
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is alre
 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

Migration and initialization

The migration script seems to corroborate this interpretation:

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_game.js:L109-
L124

The migration script shown above deploys two different versions of
PaymentOutputToPaymentTxCondition . The �rst sets supportInputTxType and
supportSpendingTxType to PAYMENT_OUTPUT_TYPE and PAYMENT_TX_TYPE , respectively.

The second sets those same variables to PAYMENT_OUTPUT_TYPE and
PAYMENT_V2_TX_TYPE , respectively.

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

// handle spending condition
await deployer.deploy(
 PaymentOutputToPaymentTxCondition,
 plasmaFramework.address,
 PAYMENT_OUTPUT_TYPE,
 PAYMENT_TX_TYPE,
);
const paymentToPaymentCondition = await PaymentOutputToPaymentTxCondition.depl

await deployer.deploy(
 PaymentOutputToPaymentTxCondition,
 plasmaFramework.address,
 PAYMENT_OUTPUT_TYPE,
 PAYMENT_V2_TX_TYPE,
);
const paymentToPaymentV2Condition = await PaymentOutputToPaymentTxCondition.de

The migration script then registers both of these contracts in
SpendingConditionRegistry , and then calls renounceOwnership , freezing the spending

conditions registered permanently:

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_game.js:L126-
L135

Finally, the migration script registers a single exit game contract in PlasmaFramework :

code/plasma_framework/migrations/5_deploy_and_register_payment_exit_game.js:L137-
L143

// register the exit game to framework
await plasmaFramework.registerExitGame(
 PAYMENT_TX_TYPE,
 paymentExitGame.address,
 config.frameworks.protocols.moreVp,
 { from: maintainerAddress },
);

Note that the associated _txType is permanently associated with the deployed exit game
contract:

code/plasma_framework/contracts/src/framework/registries/ExitGameRegistry.sol:L58-
L78

console.log(`Registering paymentToPaymentCondition (${paymentToPaymentConditio
await spendingConditionRegistry.registerSpendingCondition(
 PAYMENT_OUTPUT_TYPE, PAYMENT_TX_TYPE, paymentToPaymentCondition.address,
);

console.log(`Registering paymentToPaymentV2Condition (${paymentToPaymentV2Cond
await spendingConditionRegistry.registerSpendingCondition(
 PAYMENT_OUTPUT_TYPE, PAYMENT_V2_TX_TYPE, paymentToPaymentV2Condition.addre
);
await spendingConditionRegistry.renounceOwnership();

Conclusion

Crucially, this association is never used. It is implied heavily that transactions with some
txType must use a certain registered exit game contract. In fact, this is not true. When

using PaymentExitGame , its routers, and their associated controllers, the txType is
invariably inferred from the encoded transaction, not from the mappings in
ExitGameRegistry . If initialized as-is, both PAYMENT_TX_TYPE and PAYMENT_V2_TX_TYPE

transactions may be exited using PaymentExitGame , provided they exist in the plasma
chain.

Recommendation

Remove PaymentOutputToPaymentTxCondition and SpendingConditionRegistry

Implement checks for speci�c spending conditions directly in exit game controllers.
Emphasize clarity of function: ensure it is clear when called from the top level that a
signature veri�cation check and spending condition check are being performed.

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protocol)
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit g
 require(_exitGames[_txType] == address(0), "The tx type is already registe
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is alre
 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

If the inferred relationship between txType and PaymentExitGame is correct, ensure
that each PaymentExitGame router checks for its supported txType . Alternatively,
the check could be made in PaymentExitGame itself.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/472

5.3 RLPReader - Leading zeroes allow multiple valid encodings and
exit / output ids for the same transaction Major ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#507 with the addition of checks to
ensure primitive decoding functions in RLPReader (toAddress , toUint ,
toBytes32) do not decode lists. A subsequent change in omisego/plasma-

contracts#476 rejects leading zeroes in toUint , and improves on size requirements
for decoded payloads. Note that the scalar “0” should be encoded as 0x80 .

Description

The current implementation of RLP decoding can take 2 different txBytes and decode
them to the same structure. Speci�cally, the RLPReader.toUint method can decode 2
different types of bytes to the same number. For example:

0x821234 is decoded to uint(0x1234)

0x83001234 is decoded to uint(0x1234)

0xc101 can decode to uint(1) , even though the tag speci�es a short list

0x01 can decode to uint(1) , even though the tag speci�es a single byte

As explanation for this encoding:

0x821234 is broken down into 2 parts:

0x82 - represents 0x80 (the string tag) + 0x02 bytes encoded

0x1234 - are the encoded bytes

The same for 0x83001234 :

https://github.com/omisego/plasma-contracts/issues/472
https://github.com/omisego/plasma-contracts/pull/507
https://github.com/omisego/plasma-contracts/pull/476

0x83 - represents 0x80 (the string tag) + 0x03 bytes encoded

0x001234 - are the encoded bytes

The current implementation casts the encoded bytes into a uint256, so these different
encodings are interpreted by the contracts as the same number:

uint(0x1234) = uint(0x001234)

code/plasma_framework/contracts/src/utils/RLPReader.sol:L112

result := mload(memPtr)

Having different valid encodings for the same data is a problem because the encodings are
used to create hashes that are used as unique ids. This means that multiple ids can be
created for the same data. The data should only have one possible id.

The encoding is used to create ids in these parts of the code:

Outputid.sol

code/plasma_framework/contracts/src/exits/utils/OutputId.sol:L18

return keccak256(abi.encodePacked(_txBytes, _outputIndex, _utxoPosValue));

code/plasma_framework/contracts/src/exits/utils/OutputId.sol:L32

return keccak256(abi.encodePacked(_txBytes, _outputIndex));

ExitId.sol

code/plasma_framework/contracts/src/exits/utils/ExitId.sol:L41

bytes32 hashData = keccak256(abi.encodePacked(_txBytes, _utxoPos.value));

code/plasma_framework/contracts/src/exits/utils/ExitId.sol:L54

return uint160((uint256(keccak256(_txBytes)) >> 105).setBit(151));

TxFinalizationVeri�er.sol

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�er.sol:L55

bytes32 leafData = keccak256(data.txBytes);

Other methods that are affected because they rely on the return values of these methods:

ExitId.sol

getStandardExitId

getInFlightExitId

OutputId.sol

computeDepositOutputId

computeNormalOutputId

PaymentChallengeIFENotCanonical.sol

verifyAndDeterminePositionOfTransactionIncludedInBlock

verifyCompetingTxFinalized

PaymentChallengeStandardExit.sol

verifyChallengeTxProtocolFinalized

PaymentStartInFlightExit.sol

verifyInputTransactionIsStandardFinalized

PaymentExitGame.sol

getStandardExitId

getInFlightExitId

PaymentOutputToPaymentTxCondition.sol

verify

Recommendation

Enforce strict-length decoding for txBytes , and specify that uint is decoded from a 32-
byte short string.

Enforcing a 32-byte length for uint means that 0x1234 should always be encoded as:

0xa0001234

0xa0 represents the tag + the length: 0x80 + 32

001234 is the
number 32 bytes long with leading zeroes

Unfortunately, using leading zeroes is against the RLP spec:

https://github.com/ethereum/wiki/wiki/RLP

positive RLP integers must be represented in big endian binary form with no
leading zeroes

This means that libraries interacting with OMG contracts which are going to correctly and
fully implement the spec will generate “incorrect” encodings for uints; encodings that are
not going to be recognized by the OMG contracts.

Fully correct spec encoding: 0x821234 . Proposed encoding in this solution:
0xa0001234 .

Similarly enforce restrictions where they can be added; this is possible because of the strict
structure format that needs to be encoded.

Some other potential solutions are included below. Note that these solutions are not
recommended for reasons included below:

1. Normalize the encoding that gets passed to methods that hash the transaction for use
as an id:

This can be implemented in the methods that call keccak256 on txBytes and should
decode and re-encode the passed txBytes in order to normalize the passed encoding.

a txBytes is passed

the txBytes are decoded into structure: tmpDecodedStruct = decode(txBytes)

the tmpDecodedStruct is re-encoded in order to normalize it: normalizedTxBytes =
encode(txBytes)

This method is not recommended because it needs a Solidity encoder to be implemented
and a lot of gas will be used to decode and re-encode the initial txBytes .

1. Correctly and fully implement RLP decoding

This is another solution that adds a lot of code and is prone to errors.

https://github.com/ethereum/wiki/wiki/RLP

The solution would be to enforce all of the restrictions when decoding and not accept any
encoding that doesn’t fully follow the spec. This for example means that is should not
accept uints with leading zeroes.

This is a problem because it needs a lot of code that is not easy to write in Solidity (or EVM).

5.4 Recommendation: Remove TxFinalizationModel and
TxFinalizationVerifier . Implement stronger checks in Merkle
Medium

Resolution

This was partially addressed in omisego/plasma-contracts#503, with the removal of
several unneeded branches of logic in TxFinalizationModel (now renamed to
MoreVpFinalization). A subsequent change in omisego/plasma-contracts#533

added a non-zero proof length check in Merkle . Note that
PaymentChallengeIFENotCanonical.respond still calls Merkle.checkMembership

directly, and lacks the typical transaction type protocol check made in
MoreVpFinalization.isStandardFinalized .

Description

TxFinalizationVerifier is an abstraction around the block inclusion check needed for
many of the features of plasma exit games. It uses a struct de�ned in
TxFinalizationModel as inputs to its two functions: isStandardFinalized and
isProtocolFinalized .

isStandardFinalized returns the result of an inclusion proof. Although there are several
branches, only the �rst is used:

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�er.sol:L19-L32

/**
* @notice Checks whether a transaction is "standard finalized"
* @dev MVP: requires that both inclusion proof and confirm signature is checke
* @dev MoreVp: checks inclusion proof only
*/

https://github.com/omisego/plasma-contracts/pull/503
https://github.com/omisego/plasma-contracts/pull/533

isProtocolFinalized is unused:

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�er.sol:L34-L47

The abstraction used introduces branching logic and requires several �les to be visited to
fully understand the function of each line of code: ITxFinalizationVerifier ,
TxFinalizationModel , TxPosLib , Protocol , BlockController , and Merkle .

Additionally, the abstraction obfuscates the underlying inclusion proof primitive when used
in the exit game contracts. isStandardFinalized is not clearly an inclusion proof, and
isProtocolFinalized simply adds confusion.

Finally, the abstraction may have rami�cations on the safety of Merkle.sol . As it stands
now, Merkle.checkMembership should never be called directly by the exit game

function isStandardFinalized(Model.Data memory data) public view returns (bool
 if (data.protocol == Protocol.MORE_VP()) {
 return checkInclusionProof(data);
 } else if (data.protocol == Protocol.MVP()) {
 revert("MVP is not yet supported");
 } else {
 revert("Invalid protocol value");
 }
}

/**
* @notice Checks whether a transaction is "protocol finalized"
* @dev MVP: must be standard finalized
* @dev MoreVp: allows in-flight tx, so only checks for the existence of the tr
*/
function isProtocolFinalized(Model.Data memory data) public view returns (bool
 if (data.protocol == Protocol.MORE_VP()) {
 return data.txBytes.length > 0;
 } else if (data.protocol == Protocol.MVP()) {
 revert("MVP is not yet supported");
 } else {
 revert("Invalid protocol value");
 }
}

controllers, as it lacks an important check made in
TxFinalizationVerifier.checkInclusionProof :

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�er.sol:L49-L59

By introducing the abstraction of TxFinalizationVerifier , the input validation
performed by Merkle is split across multiple �les, and the reasonable-seeming decision of
calling Merkle.checkMembership directly becomes unsafe. In fact, this occurs in one
location in the contracts:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot
L204

function checkInclusionProof(Model.Data memory data) private view returns (boo
 if (data.inclusionProof.length == 0) {
 return false;
 }

 (bytes32 root,) = data.framework.blocks(data.txPos.blockNum());
 bytes32 leafData = keccak256(data.txBytes);
 return Merkle.checkMembership(
 leafData, data.txPos.txIndex(), root, data.inclusionProof
);
}

function verifyAndDeterminePositionOfTransactionIncludedInBlock(
 bytes memory txbytes,
 UtxoPosLib.UtxoPos memory utxoPos,
 bytes32 root,
 bytes memory inclusionProof
)
 private
 pure
 returns(uint256)
{
 bytes32 leaf = keccak256(txbytes);
 require(
 Merkle.checkMembership(leaf, utxoPos.txIndex(), root, inclusionProof),
 "Transaction is not included in block of Plasma chain"

Recommendation

1. Remove TxFinalizationVerifier and TxFinalizationModel

2. Implement a proof length check in Merkle.sol

3. Call Merkle.checkMembership directly from exit controller contracts:

PaymentChallengeIFEOutputSpent.verifyInFlightTransactionStandardFinalized :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

PaymentChallengeIFENotCanonical.verifyCompetingTxFinalized :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

PaymentStartInFlightExit.verifyInputTransactionIsStandardFinalized :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.
L308

1. If none of the above recommendations are implemented, ensure that
PaymentChallengeIFENotCanonical uses the abstraction TxFinalizationVerifier

so that a length check is performed on the inclusion proof.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/471

);

 return utxoPos.value;
}

require(controller.txFinalizationVerifier.isStandardFinalized(finalizationData

require(self.txFinalizationVerifier.isStandardFinalized(finalizationData), "Fa

require(exitData.controller.txFinalizationVerifier.isStandardFinalized(finaliz
 "Input transaction is not standard finalized");

https://github.com/omisego/plasma-contracts/issues/471

5.5 Merkle - The implementation does not enforce inclusion of leaf
nodes. Medium ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#452 with the addition of leaf and
node salts to the checkMembership function.

Description

A observation with the current Merkle tree implementation is that it may be possible to
validate nodes other than leaves. This is done by providing checkMembership with a
reference to a hash within the tree, rather than a leaf.

code/plasma_framework/contracts/src/utils/Merkle.sol:L9-L42

/**
 * @notice Checks that a leaf hash is contained in a root hash
 * @param leaf Leaf hash to verify
 * @param index Position of the leaf hash in the Merkle tree
 * @param rootHash Root of the Merkle tree
 * @param proof A Merkle proof demonstrating membership of the leaf hash
 * @return True, if the leaf hash is in the Merkle tree; otherwise, False
*/
function checkMembership(bytes32 leaf, uint256 index, bytes32 rootHash, bytes
 internal
 pure
 returns (bool)
{
 require(proof.length % 32 == 0, "Length of Merkle proof must be a multiple

 bytes32 proofElement;
 bytes32 computedHash = leaf;
 uint256 j = index;
 // Note: We're skipping the first 32 bytes of `proof`, which holds the siz
 for (uint256 i = 32; i <= proof.length; i += 32) {
 // solhint-disable-next-line no-inline-assembly
 assembly {

https://github.com/omisego/plasma-contracts/pull/452

The current implementation will validate the provided “leaf” and return true . This is a
known problem of Merkle trees
https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack.

Examples

Provide a hash from within the Merkle tree as the leaf argument. The index has to match
the index of that node in regards to its current level in the tree. The rootHash has to be the
correct Merkle tree rootHash . The proof has to skip the necessary number of levels
because the nodes “underneath” the provided “leaf” will not be processed.

Recommendation

A remediation needs a �xed Merkle tree size as well as the addition of a byte prepended to
each node in the tree. Another way would be to create a structure for the Merkle node and
mark it as leaf or no leaf .

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/425

 proofElement := mload(add(proof, i))
 }
 if (j % 2 == 0) {
 computedHash = keccak256(abi.encodePacked(computedHash, proofEleme
 } else {
 computedHash = keccak256(abi.encodePacked(proofElement, computedHa
 }
 j = j / 2;
 }

 return computedHash == rootHash;
}

5.6 Maintainer can bypass exit game quarantine by registering not-
yet-deployed contracts Medium ✓ Addressed

Resolution

https://en.wikipedia.org/wiki/Merkle_tree#Second_preimage_attack
https://github.com/omisego/plasma-contracts/issues/425

This was addressed in commit 7669076be1dff47473ee877dcebef5989d7617ac by
adding a check that registered contracts had nonzero extcodesize .

Description

The plasma framework uses an ExitGameRegistry to allow the maintainer to add new
exit games after deployment. An exit game is any arbitrary contract. In order to prevent the
maintainer from adding malicious exit games that steal user funds, the framework uses a
“quarantine” system whereby newly-registered exit games have restricted permissions until
their quarantine period has expired. The quarantine period is by default 3 *
minExitPeriod , and is intended to facilitate auditing of the new exit game’s functionality by
the plasma users.

However, by registering an exit game at a contract which has not yet been deployed, the
maintainer can prevent plasma users from auditing the game until the quarantine period
has expired. After the quarantine period has expired, the maintainer can deploy the
malicious exit game and immediately steal funds.

Explanation

Exit games are registered in the following function, callable only by the plasma contract
maintainer:

code/plasma_framework/contracts/src/framework/registries/ExitGameRegistry.sol:L58-
L78

/**
 * @notice Registers an exit game within the PlasmaFramework. Only the maintai
 * @dev Emits ExitGameRegistered event to notify clients
 * @param _txType The tx type where the exit game wants to register
 * @param _contract Address of the exit game contract
 * @param _protocol The transaction protocol, either 1 for MVP or 2 for MoreVP
 */
function registerExitGame(uint256 _txType, address _contract, uint8 _protocol)
 require(_txType != 0, "Should not register with tx type 0");
 require(_contract != address(0), "Should not register with an empty exit g
 require(_exitGames[_txType] == address(0), "The tx type is already registe
 require(_exitGameToTxType[_contract] == 0, "The exit game contract is alre

https://github.com/omisego/plasma-contracts/pull/469/commits/7669076be1dff47473ee877dcebef5989d7617ac

Notably, the function does not check the extcodesize of the submitted contract. As such,
the maintainer can submit the address of a contract which does not yet exist and is not
auditable.

After at least 3 * minExitPeriod seconds pass, the submitted contract now has full
permissions as a registered exit game and can pass all checks using the
onlyFromNonQuarantinedExitGame modi�er:

code/plasma_framework/contracts/src/framework/registries/ExitGameRegistry.sol:L33-
L40

Additionally, the submitted contract passes checks made by external contracts using the
isExitGameSafeToUse function:

code/plasma_framework/contracts/src/framework/registries/ExitGameRegistry.sol:L48-
L56

 require(Protocol.isValidProtocol(_protocol), "Invalid protocol value");

 _exitGames[_txType] = _contract;
 _exitGameToTxType[_contract] = _txType;
 _protocols[_txType] = _protocol;
 _exitGameQuarantine.quarantine(_contract);

 emit ExitGameRegistered(_txType, _contract, _protocol);
}

/**
 * @notice A modifier to verify that the call is from a non-quarantined exit g
 */
modifier onlyFromNonQuarantinedExitGame() {
 require(_exitGameToTxType[msg.sender] != 0, "The call is not from a regist
 require(!_exitGameQuarantine.isQuarantined(msg.sender), "ExitGame is quara
 _;
}

/**
 * @notice Checks whether the contract is safe to use and is not under quarant
 * @dev Exposes information about exit games quarantine

These permissions allow a registered quarantine to:

1. Withdraw any users’ tokens from ERC20Vault :

code/plasma_framework/contracts/src/vaults/Erc20Vault.sol:L52-L55

1. Withdraw any users’ ETH from EthVault :

code/plasma_framework/contracts/src/vaults/EthVault.sol:L46-L54

1. Activate and deactivate the ExitGameController reentrancy mutex:

code/plasma_framework/contracts/src/framework/ExitGameController.sol:L63-L66

function activateNonReentrant() external onlyFromNonQuarantinedExitGame() {
 require(!mutex, "Reentrant call");

 * @param _contract Address of the exit game contract
 * @return boolean Whether the contract is safe to use and is not under quaran
 */
function isExitGameSafeToUse(address _contract) public view returns (bool) {
 return _exitGameToTxType[_contract] != 0 && !_exitGameQuarantine.isQuarant
}

function withdraw(address payable receiver, address token, uint256 amount) ext
 IERC20(token).safeTransfer(receiver, amount);
 emit Erc20Withdrawn(receiver, token, amount);
}

function withdraw(address payable receiver, uint256 amount) external onlyFromN
 // we do not want to block exit queue if transfer is unucessful
 // solhint-disable-next-line avoid-call-value
 (bool success,) = receiver.call.value(amount)("");
 if (success) {
 emit EthWithdrawn(receiver, amount);
 } else {
 emit WithdrawFailed(receiver, amount);
 }

 mutex = true;
}

code/plasma_framework/contracts/src/framework/ExitGameController.sol:L72-L75

1. enqueue arbitrary exits:

code/plasma_framework/contracts/src/framework/ExitGameController.sol:L115-L138

function deactivateNonReentrant() external onlyFromNonQuarantinedExitGame() {
 require(mutex, "Not locked");
 mutex = false;
}

function enqueue(
 uint256 vaultId,
 address token,
 uint64 exitableAt,
 TxPosLib.TxPos calldata txPos,
 uint160 exitId,
 IExitProcessor exitProcessor
)
 external
 onlyFromNonQuarantinedExitGame
 returns (uint256)
{
 bytes32 key = exitQueueKey(vaultId, token);
 require(hasExitQueue(key), "The queue for the (vaultId, token) pair is not
 PriorityQueue queue = exitsQueues[key];

 uint256 priority = ExitPriority.computePriority(exitableAt, txPos, exitId)

 queue.insert(priority);
 delegations[priority] = exitProcessor;

 emit ExitQueued(exitId, priority);
 return priority;
}

1. Flag outputs as “spent”:

code/plasma_framework/contracts/src/framework/ExitGameController.sol:L210-L213

Recommendation

registerExitGame should check that extcodesize of the submitted contract is non-
zero.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/410

function flagOutputSpent(bytes32 _outputId) external onlyFromNonQuarantinedExi
 require(_outputId != bytes32(""), "Should not flag with empty outputId");
 isOutputSpent[_outputId] = true;
}

5.7 EthVault - Unused state variable Minor ✓ Addressed

Resolution

This was addressed in commit ea36f5ff46ab72ec5c281fa0a3dffe3bcc83178b.

Description

The state variable withdrawEntryCounter is not used in the code.

code/plasma_framework/contracts/src/vaults/EthVault.sol:L8

uint256 private withdrawEntryCounter = 0;

Recommendation

Remove it from the contract.

https://github.com/omisego/plasma-contracts/issues/410
https://github.com/omisego/plasma-contracts/commit/ea36f5ff46ab72ec5c281fa0a3dffe3bcc83178b

5.8 Recommendation: Add a tree height limit check to Merkle.sol
Minor

Description

Each plasma block has a maximum of 2 ** 16 transactions, which corresponds to a
maximum Merkle tree height of 16. The Merkle library currently checks that the proof is
comprised of 32-byte segments, but neglects to check the maximum height:

code/plasma_framework/contracts/src/utils/Merkle.sol:L17-L23

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/467

function checkMembership(bytes32 leaf, uint256 index, bytes32 rootHash, bytes
 internal
 pure
 returns (bool)
{
 require(proof.length % 32 == 0, "Length of Merkle proof must be a multiple

5.9 Recommendation: remove IsDeposit and add a similar getter to
BlockController Minor ✓ Addressed

Resolution

This was addressed in commit 0fee13f7f084983139eb47636ff785ebea8a1c36 by
removing the IsDeposit contract and replicating its functionality in
BlockController.sol .

Description

The IsDeposit library is used to check whether a block number is a deposit or not. The
logic is simple - if blockNum % childBlockInterval is nonzero, the block number is a
deposit.

https://github.com/omisego/plasma-contracts/issues/467
https://github.com/omisego/plasma-contracts/pull/516/commits/0fee13f7f084983139eb47636ff785ebea8a1c36

By including this check in BlockController instead, the contract can perform an
existence check as well. The function in BlockController would return the same result as
the IsDeposit library, but would additionally revert if the block in question does not exist:

function isDeposit(uint _blockNum) public view returns (bool) {
 require(blocks[_blockNum].timestamp != 0, "Block does not exist");
 return _blockNum % childBlockInterval != 0;
}

Note that this check is made at the cost of an external call. If the check needs to be made
multiple times in a transaction, the result should be cached.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/466

5.10 Recommendation: Merge TxPosLib into UtxoPosLib and
implement a decode function with range checks. Minor

Resolution

This was partially addressed in omisego/plasma-contracts#515 with the merging of
TxPosLib and UtxoPosLib into PosLib . A subsequent change in omisego/plasma-

contracts#533 implemented stricter range checks for block number and transaction
index. Note that the maximum output index in PosLib is still 9999, well above the
currently-supported maximum of “3”. Additionally, PosLib.encode lacks an explicit
range check on txIndex and PosLib.decode lacks an explicit range check on
outputIndex .

Description

TxPosLib and UtxoPosLib serve very similar functions. They both provide utility
functions to access the block number and tx index of a packed utxo position variable.
UtxoPosLib , additionally, provides a function to retrieve the output index of a packed utxo

position variable.

What they both lack, though, is sanity checks on the values packed inside a utxo position
variable. By implementing a function UtxoPosLib.decode(uint _utxoPos) returns

https://github.com/omisego/plasma-contracts/issues/466
https://github.com/omisego/plasma-contracts/pull/515
https://github.com/omisego/plasma-contracts/pull/533

(UtxoPos) , each exit controller contract can ensure that the values it is using make logical
sense. The decode function should check that:

txIndex is between 0 and 2**16

outputIndex is between 0 and 3

Currently, neither of these restrictions is explicitly enforced. As for blockNum , the best
check is that it exists in the PlasmaFramework contract with a nonzero root. Since
UtxoPosLib is a pure library, that check is better performed elsewhere (See issue 5.9).

Once implemented, all contracts should avoid casting values directly to the UtxoPos
struct, in favor of using the decode function. Merging the two �les will help with this.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/465

5.11 Recommendation: Implement additional existence and range
checks on inputs and storage reads Minor

Resolution

This was partially addressed in omisego/plasma-contracts#524 and
omisego/plasma-contracts#483. Not all recommended checks were included.

Description

Many input validation and storage read checks are made implicitly, rather than explicitly.
The following compilation notes each line of code in the exit controller contracts where an
additional check should be added.

Examples

1. PaymentChallengeIFEInputSpent :

Check that inFlightTx has a nonzero input at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

https://github.com/omisego/plasma-contracts/issues/465
https://github.com/omisego/plasma-contracts/pull/524
https://github.com/omisego/plasma-contracts/pull/483

Check that each transaction is nonzero and is correctly formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu
L101

require(
 keccak256(args.inFlightTx) != keccak256(args.challengingTx),
 "The challenging transaction is the same as the in-flight transaction"
);

Check that resulting outputId is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

See issue 5.9:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

Check that inputTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu
L128

require(ife.isInputPiggybacked(args.inFlightTxInputIndex), "The indexed input

bytes32 ifeInputOutputId = data.ife.inputs[data.args.inFlightTxInputIndex].out

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(data.args.inputUtxoPos)

bytes32 challengingTxInputOutputId = data.controller.isDeposit.test(utxoPos.bl

? OutputId.computeDepositOutputId(data.args.inputTx, utxoPos.outputIndex(), ut
: OutputId.computeNormalOutputId(data.args.inputTx, utxoPos.outputIndex());

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.9:

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

Check that challengingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEInpu

data.args.challengingTxInputIndex,

2. PaymentChallengeIFENotCanonical :

Check that each transaction is nonzero and is correctly formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot
L101

require(
 keccak256(args.inFlightTx) != keccak256(args.competingTx),
 "The competitor transaction is the same as transaction in-flight"
);

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

See issue 5.9:

WireTransaction.Output memory output = WireTransaction.getOutput(data.args.cha

UtxoPosLib.UtxoPos memory inputUtxoPos = UtxoPosLib.UtxoPos(data.args.inputUtx

UtxoPosLib.UtxoPos memory inputUtxoPos = UtxoPosLib.UtxoPos(args.inputUtxoPos)

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.9:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

if (self.isDeposit.test(inputUtxoPos.blockNum())) {

Check that inputTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot
L110

Check that inFlightTx has a nonzero input at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot
L113

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

Check that competingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

args.competingTxInputIndex,

Check that resulting position is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

 outputId = OutputId.computeDepositOutputId(args.inputTx, inputUtxoPos.outp
} else {
 outputId = OutputId.computeNormalOutputId(args.inputTx, inputUtxoPos.outpu

require(outputId == ife.inputs[args.inFlightTxInputIndex].outputId,
 "Provided inputs data does not point to the same outputId from the in-

WireTransaction.Output memory output = WireTransaction.getOutput(args.inputTx,

Check that inFlightTxPos is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot
L173

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(inFlightTxPos);

Check that block root is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

(bytes32 root,) = self.framework.blocks(utxoPos.blockNum());

Check that inFlightTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

inFlightTx, utxoPos, root, inFlightTxInclusionProof

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

3. PaymentChallengeIFEOutputSpent :

uint256 competitorPosition = verifyCompetingTxFinalized(self, args, output);

require(
 ife.oldestCompetitorPosition > inFlightTxPos,
 "In-flight transaction must be younger than competitors to respond to non-

UtxoPosLib.UtxoPos memory competingTxUtxoPos = UtxoPosLib.UtxoPos(args.competi

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:

Check that inFlightTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

Check that inFlightTx has a nonzero output at the provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut
L63

require(
 ife.isOutputPiggybacked(outputIndex),
 "Output is not piggybacked"
);

Check that bond size is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

uint256 piggybackBondSize = ife.outputs[outputIndex].piggybackBondSize;

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.outputUtxoPos);

Check that challengingTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

Check that challengingTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFEOut

args.challengingTxInputIndex,

4. PaymentChallengeStandardExit :

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

Check that exitingTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

.decode(data.args.exitingTx)

Check that output is nonzero:

uint256 challengingTxType = WireTransaction.getTransactionType(args.challengin

WireTransaction.Output memory output = WireTransaction.getOutput(args.challeng

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(data.exitData.utxoPos);

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda
L113

PaymentOutputModel.Output memory output = PaymentTransactionModel
 .decode(data.args.exitingTx)
 .outputs[utxoPos.outputIndex()];

Check that challengeTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

txPos: TxPosLib.TxPos(data.args.challengeTxPos),

See issue 5.9:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

bytes32 outputId = data.controller.isDeposit.test(utxoPos.blockNum())

Check that challengeTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeStanda

args.inputIndex,

5. PaymentPiggybackInFlightExit :

Check that inFlightTx is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

uint256 challengeTxType = WireTransaction.getTransactionType(data.args.challen

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.9:

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that inFlightTx has a nonzero input at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

Check that inFlightTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

uint160 exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that inFlightTx has a nonzero output at provided index:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

6. PaymentStartInFlightExit :

Check that inFlightTx is nonzero and is well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

require(!exit.isInputPiggybacked(args.inputIndex), "Indexed input already pigg

enqueue(self, withdrawData.token, UtxoPosLib.UtxoPos(exit.position), exitId);

require(!exit.isOutputPiggybacked(args.outputIndex), "Indexed output already p

enqueue(self, withdrawData.token, UtxoPosLib.UtxoPos(exit.position), exitId);

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:

exitData.exitId = ExitId.getInFlightExitId(args.inFlightTx);

Check that the length of inputTxs is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

exitData.inputTxs = args.inputTxs;

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

utxosPos[i] = UtxoPosLib.UtxoPos(inputUtxosPos[i]);

See issue 5.9:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

bool isDepositTx = controller.isDeposit.test(utxoPos[i].blockNum());

Check that each inputTxs is nonzero and well-formed:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.
L183

Check that each output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

Check that inFlightTx has nonzero inputs for all i :

outputIds[i] = isDepositTx
 ? OutputId.computeDepositOutputId(inputTxs[i], utxoPos[i].outputIndex(), u
 : OutputId.computeNormalOutputId(inputTxs[i], utxoPos[i].outputIndex());

WireTransaction.Output memory output = WireTransaction.getOutput(inputTxs[i],

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.9:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.
L328

exitData.inFlightTxRaw,
i,

Check that each output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.

PaymentOutputModel.Output memory output = exitData.inFlightTx.outputs[i];

7. PaymentStartStandardExit :

See issue 5.10:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartStandardExi

UtxoPosLib.UtxoPos memory utxoPos = UtxoPosLib.UtxoPos(args.utxoPos);

Check that output is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartStandardExi

Check that timestamp is nonzero:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartStandardExi

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/463

PaymentOutputModel.Output memory output = outputTx.outputs[utxoPos.outputIndex

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum());

http://localhost:1313/audits/2020/01/omisego-morevp/issue%205.10:
https://github.com/omisego/plasma-contracts/issues/463

5.12 Recommendation: Remove optional arguments and clean
unused code Minor ✓ Addressed

Resolution

This was addressed in omisego/plasma-contracts#496 and omisego/plasma-
contracts#503 with the removal of the output guard handler pattern, the simpli�cation
of the tx �nalization check via MoreVpFinalization , and the removal of various
unused function parameters and struct �elds.

Description

Several locations in the codebase feature unused arguments, functions, return values, and
more. There are two primary reasons to remove these artifacts from the codebase:

1. Mass exits are the primary safeguard against a byzantine operator. The biggest
bottleneck of a mass exit is transaction throughput, so plasma rootchain
implementations should strive to be as e�cient as possible. Many unused features
require external calls, memory allocation, unneeded calculation, and more.

2. The contracts are set up to be extensible by way of the addition of new exit games to
the system. “Optional” or unimplemented features in current exit games should be
removed for simplicity’s sake, as they currently make up a large portion of the
codebase.

Examples

Output guard handlers

These offer very little utility in the current contracts. The main contract,
PaymentOutputGuardHandler , has three functions:

isValid enforces that some “preimage” value passed in via calldata has a
length of zero. This could be removed along with the unused “preimage”
parameter.

getExitTarget converts a bytes20 to address payable (with the help of
AddressPayable.sol). This could be removed in favor of using
AddressPayable directly where needed.

https://github.com/omisego/plasma-contracts/pull/496
https://github.com/omisego/plasma-contracts/pull/503

getConfirmSigAddress simply returns an empty address. This should be
removed wherever used - empty �elds should be a rare exception or an error,
rather than being injected as unused values into critical functions.

The minimal utility offered comes at the price of using an external call to the
OutputGuardHandlerRegistry , as well as an external call for each of the

functions mentioned above. Overall, the existence of output guard handlers adds
thousands of gas to the exit process.

Referenced contracts: IOutputGuardHandler , OutputGuardModel ,
PaymentOutputGuardHandler , OutputGuardHandlerRegistry

Payment router arguments

Several �elds in the exit router structs are marked “optional,” and are not used in
the contracts. While this is not particularly impactful, it does clutter and confuse
the contracts. Many “optional” �elds are referenced and passed into functions
which do not use them. Of note is the crucially-important signature veri�cation
function, PaymentOutputToPaymentTxCondition.verify , where
StartExitData.inputSpendingConditionOptionalArgs resolves to an unnamed

parameter:

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartInFlightExit.
L332

bool isSpentByInFlightTx = condition.verify(
 exitData.inputTxs[i],
 exitData.inputUtxosPos[i].outputIndex(),
 exitData.inputUtxosPos[i].txPos().value,
 exitData.inFlightTxRaw,
 i,
 exitData.inFlightTxWitnesses[i],
 exitData.inputSpendingConditionOptionalArgs[i]
);
require(isSpentByInFlightTx, "Spending condition failed");

code/plasma_framework/contracts/src/exits/payment/spendingConditions/PaymentOutputT
L47

function verify(
 bytes calldata inputTxBytes,
 uint16 outputIndex,
 uint256 inputTxPos,
 bytes calldata spendingTxBytes,
 uint16 inputIndex,
 bytes calldata signature,
 bytes calldata /*optionalArgs*/

The additional �elds clutter the namespace of each struct, confusing the purpose of the
other �elds. For example, PaymentInFlightExitRouterArgs.StartExitArgs features two
�elds, inputTxsConfirmSigs and inFlightTxsWitnesses , the former of which is marked
“optional”. In fact, the inFlightTxsWitnesses �eld ends up containing the signatures
passed to the spending condition veri�er and ECDSA library:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentInFlightExitRouterArg
L24

/**
* @notice Wraps arguments for startInFlightExit.
* @param inFlightTx RLP encoded in-flight transaction.
* @param inputTxs Transactions that created the inputs to the in-flight transa
* @param inputUtxosPos Utxos that represent in-flight transaction inputs. In t
* @param outputGuardPreimagesForInputs (Optional) Output guard pre-images for
* @param inputTxsInclusionProofs Merkle proofs that show the input-creating tr
* @param inputTxsConfirmSigs (Optional) Confirm signatures for the input txs.
* @param inFlightTxWitnesses Witnesses for in-flight transaction. In the same
* @param inputSpendingConditionOptionalArgs (Optional) Additional args for the
*/
struct StartExitArgs {
 bytes inFlightTx;
 bytes[] inputTxs;
 uint256[] inputUtxosPos;
 bytes[] outputGuardPreimagesForInputs;
 bytes[] inputTxsInclusionProofs;
 bytes[] inputTxsConfirmSigs;
 bytes[] inFlightTxWitnesses;

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/457

 bytes[] inputSpendingConditionOptionalArgs;
}

5.13 Recommendation: Remove WireTransaction and
PaymentOutputModel . Fold functionality into an extended
PaymentTransactionModel Minor

Description

RLP decoding is performed on transaction bytes in each of WireTransaction ,
PaymentOutputModel , and PaymentTransactionModel . The latter is the primary decoding

function for transactions, while the former two contracts deal with outputs speci�cally.

Both WireTransaction and PaymentOutputModel make use of RLPReader to decode
transaction objects, and both implement very similar features. Rather than having a
codebase with two separate de�nitions for struct Output , PaymentTransactionModel
should be extended to implement all required functionality.

Examples

PaymentTransactionModel should include three distinct decoding functions:
decodeDepositTx decodes a deposit transaction, which has no inputs and

exactly 1 output.

decodeSpendTx decodes a spend transaction, which has exactly 4 inputs and 4
outputs.

decodeOutput decodes an output, which is a long list with 4 �elds (uint ,
address , address , uint)

A mock implementation including decodeSpendTx and decodeOutput is shown here:
https://gist.github.com/wadeAlexC/7820c0cd82fd5fdc11a0ad58a84165ae

OmiseGo may want to consider enforcing restrictions on the ordering of empty and
nonempty �elds here as well.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/456

https://github.com/omisego/plasma-contracts/issues/457
https://gist.github.com/wadeAlexC/7820c0cd82fd5fdc11a0ad58a84165ae
https://github.com/omisego/plasma-contracts/issues/456

5.14 ECDSA error value is not handled Minor ✓ Addressed

Resolution

This was addressed in commit 32288ccff5b867a7477b4eaf3beb0587a4684d7a by
adding a check that the returned value is nonzero.

Description

The OpenZeppelin ECDSA library returns address(0x00) for many cases with malformed
signatures:

contracts/cryptography/ECDSA.sol:L57-L63

The PaymentOutputToPaymentTxCondition contract does not explicitly handle this case:

code/plasma_framework/contracts/src/exits/payment/spendingConditions/PaymentOutputT
L68

Recommendation

Adding a check to handle this case will make it easier to reason about the code.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/454

if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681
 return address(0);
}

if (v != 27 && v != 28) {
 return address(0);
}

address payable owner = inputTx.outputs[outputIndex].owner();
require(owner == ECDSA.recover(eip712.hashTx(spendingTx), signature), "Tx in n

return true;

https://github.com/omisego/plasma-contracts/pull/459/commits/32288ccff5b867a7477b4eaf3beb0587a4684d7a
https://github.com/omisego/plasma-contracts/issues/454

5.15 No existence checks on framework block and timestamp reads
Minor ✓ Addressed

Resolution

This was addressed in commit c5e5a460a2082b809a2c45b2d6a69b738b34937a by
adding checks that block root and timestamp reads return nonzero values.

Description

The exit game libraries make several queries to the main PlasmaFramework contract
where plasma block hashes and timestamps are stored. In multiple locations, the return
values of these queries are not checked for existence.

Examples

1. PaymentStartStandardExit.setupStartStandardExitData :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentStartStandardExi

1. PaymentChallengeIFENotCanonical.respond :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentChallengeIFENot

(bytes32 root,) = self.framework.blocks(utxoPos.blockNum());

1. PaymentPiggybackInFlightExit.enqueue :

code/plasma_framework/contracts/src/exits/payment/controllers/PaymentPiggybackInFligh

1. TxFinalizationVerifier.checkInclusionProof :

code/plasma_framework/contracts/src/exits/utils/TxFinalizationVeri�er.sol:L54

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum());

(, uint256 blockTimestamp) = controller.framework.blocks(utxoPos.blockNum());

https://github.com/omisego/plasma-contracts/commit/c5e5a460a2082b809a2c45b2d6a69b738b34937a

(bytes32 root,) = data.framework.blocks(data.txPos.blockNum());

Recommendation

Although none of these examples seem exploitable, adding existence checks makes it
easier to reason about the code. Each query to PlasmaFramework.blocks should be
followed with a check that the returned value is nonzero.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/463

5.16 BondSize - effectiveUpdateTime should be uint64 Minor

Description

In BondSize, the mechanism to update the size of the bond has a grace period after which
the new bond size becomes active.

When updating the bond size, the time is casted as a uint64 and saved in a uint128
variable.

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L24

uint128 effectiveUpdateTime;

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L11

uint64 constant public WAITING_PERIOD = 2 days;

code/plasma_framework/contracts/src/exits/utils/BondSize.sol:L57

self.effectiveUpdateTime = uint64(now) + WAITING_PERIOD;

There’s no need to use a uint128 to save the time if it never will take up that much space.

Recommendation

https://github.com/omisego/plasma-contracts/issues/463

Change the type of the effectiveUpdateTime to uint64 .

- uint128 effectiveUpdateTime;
+ uint64 effectiveUpdateTime;

5.17 PaymentExitGame contains several redundant plasmaFramework
declarations Minor

Description

PaymentExitGame inherits from both PaymentInFlightExitRouter and
PaymentStandardExitRouter . All three contracts declare and initialize their own
PlasmaFramework variable. This pattern can be misleading, and may lead to subtle issues

in future versions of the code.

Examples

1. PaymentExitGame declaration:

code/plasma_framework/contracts/src/exits/payment/PaymentExitGame.sol:L18

PlasmaFramework private plasmaFramework;

1. PaymentInFlightExitRouter declaration:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentInFlightExitRouter.so

PlasmaFramework private framework;

1. PaymentStandardExitRouter declaration:

code/plasma_framework/contracts/src/exits/payment/routers/PaymentStandardExitRouter.s

PlasmaFramework private framework;

Each variable is initialized in the corresponding �le’s constructor.

Recommendation

Introduce an inherited contract common to PaymentStandardExitRouter and
PaymentInFlightExitRouter with the PlasmaFramework variable. Make the variable

internal so it is visible to inheriting contracts.

5.18 BlockController - inaccurate description of childBlockInterval
for submitDepositBlock Minor

Description

The Vault calls submitDepositBlock when a user deposits funds into the plasma chain.
Each deposit transaction creates one deposit block on the plasma chain. The number of
deposit blocks between two child blocks is limited by the childBlockInterval . For
example, a childBlockInterval of 1 would not allow any deposit blocks, a
childBlockInterval of 2 would allow one deposit block after each child block [child]
[optional: deposit][child][optional: deposit] .

code/plasma_framework/contracts/src/framework/BlockController.sol:L96-L114

/**
 * @notice Submits a block for deposit
 * @dev Block number adds 1 per submission; it's possible to have at most 'chi
 * @param _blockRoot Merkle root of the Plasma block
 * @return The deposit block number
 */
function submitDepositBlock(bytes32 _blockRoot) public onlyFromNonQuarantinedV
 require(isChildChainActivated == true, "Child chain has not been activated
 require(nextDeposit < childBlockInterval, "Exceeded limit of deposits per

 uint256 blknum = nextDepositBlock();
 blocks[blknum] = BlockModel.Block({
 root : _blockRoot,
 timestamp : block.timestamp
 });

 nextDeposit++;
 return blknum;
}

However, the comment at line 98 mentions the following:

[..] it’s possible to have at most ‘childBlockInterval’ deposit blocks between two
child chain blocks [..]

This comment is inaccurate, as a childBlockInterval of 1 would not allow deposits at
all (Note how nextDeposit is always >=1).

Remediation

The comment should read: [..] it’s possible to have at most ‘childBlockInterval -1’ deposit
blocks between two child chain blocks [..]. Make sure to properly validate inputs for these
values when deploying the contract to avoid obvious miscon�guration.

5.19 PlasmaFramework - Can omit inheritance of VaultRegistry
Minor

Description

The contract PlasmaFramework inherits VaultRegistry even though it does not use any
of the methods directly. Also BlockController inherits VaultRegistry effectively
adding all of the needed functionality in there.

Remediation

PlasmaFramework does not need to inherit VaultRegistry , thus the import and the
inheritance can be removed from PlasmaFramework.sol .

 import "./BlockController.sol";
 import "./ExitGameController.sol";
-import "./registries/VaultRegistry.sol";
 import "./registries/ExitGameRegistry.sol";

-contract PlasmaFramework is VaultRegistry, ExitGameRegistry, ExitGameControll
+contract PlasmaFramework is ExitGameRegistry, ExitGameController, BlockContro
 uint256 public constant CHILD_BLOCK_INTERVAL = 1000;

 /**

All tests still pass after removing the inheritance.

5.20 BlockController - maintainer should be the only entity to set
new authority Minor ✓ Addressed

Resolution

This was addressed in commit 25c2560e3b2e40ce9a10c40da97c3f79afc2c641 with
the removal of the setAuthority function.

Description

code/plasma_framework/contracts/src/framework/BlockController.sol:L69-L72

deployer initially sets the account that is allowed to submit new blocks as authority .
authority can then set a new authority at will. In a system that is set-up and

maintained by a maintainer role (multi-sig) that can upgrade certain parts of the system
it is unexpected for another role to be able to pass along its permissions. The security
speci�cation notes that the authority role is only used to submit blocks:

Authority: EOA used exclusively to submit plasma block hashes to the root chain.
The child chain assumes at deployment that the authority account has nonce zero
and no transactions have been sent from it.

However, no transactions might not be possible as authority is the only one to
activateChildChain . Once activated, the child chain cannot be de-activated but the
authority can change.

elixir-omg#managing-the-operator-address notes the following for operator aka
authority :

function setAuthority(address newAuthority) external onlyFrom(authority) {
 require(newAuthority != address(0), "Authority address cannot be zero");
 authority = newAuthority;
}

https://github.com/omisego/plasma-contracts/pull/434/commits/25c2560e3b2e40ce9a10c40da97c3f79afc2c641
https://github.com/omisego/plasma-contracts/blob/422f77adabbcca0061cbf73df2ac12b73ed054f8/security/spec.md
https://github.com/omisego/elixir-omg#managing-the-operator-address

As a consequence, the operator address must never send any other transactions, if
it intends to continue submitting blocks. (Workarounds to this limitation are
available, if there’s such requirement.)

Additionally, setAuthority should emit an event to allow participants to react to this
change in the system and have an audit trial.

Remediation

Remove the setAuthority function, or clarify its intended purpose and add an event so it
can be detected by users.

Corresponding issue in plasma-contracts repo: https://github.com/omisego/plasma-
contracts/issues/403

Appendix 1 - Scope

Our initial review covered the following �les:

File Name

exits/interfaces/IOutputGuardHandler.sol 441f1302e9c56a

exits/interfaces/ISpendingCondition.sol 00c615d91f4b56

exits/interfaces/IStateTransitionVeri�er.sol a8a402a118795

exits/interfaces/ITxFinalizationVeri�er.sol 47d1025d9d719

exits/models/OutputGuardModel.sol 46ef116b93bb41

exits/models/TxFinalizationModel.sol 8a5bbd3e8022e3

exits/payment/controllers/PaymentChallengeIFEInputSpent.sol 277cac44c58fcc

exits/payment/controllers/PaymentChallengeIFENotCanonical.sol cddc8ba53ccf99

exits/payment/controllers/PaymentChallengeIFEOutputSpent.sol a5ce1510088b8

exits/payment/controllers/PaymentChallengeStandardExit.sol a5a319545934d

exits/payment/controllers/PaymentPiggybackInFlightExit.sol 8eb01f55de028e

exits/payment/controllers/PaymentProcessInFlightExit.sol 6ba4a78b47995

exits/payment/controllers/PaymentProcessStandardExit.sol 20e5f5d30b3787

exits/payment/controllers/PaymentStartInFlightExit.sol c6c5424ee37c61

https://github.com/omisego/plasma-contracts/issues/403

File Name

exits/payment/controllers/PaymentStartStandardExit.sol 4ebe197698627

exits/payment/outputGuardHandlers/PaymentOutputGuardHandler.sol 564e9ea7a3fb40

exits/payment/PaymentExitDataModel.sol d1e69011622fe6

exits/payment/PaymentExitGame.sol f0b6b93c0a89e1

exits/payment/PaymentInFlightExitModelUtils.sol 33d3e5c065be8f

exits/payment/PaymentTransactionStateTransitionVeri�er.sol e5cf8acf73b6ad4

exits/payment/routers/PaymentInFlightExitRouterArgs.sol c11e874a9e06fb

exits/payment/routers/PaymentInFlightExitRouter.sol 970fa3e62f1a56

exits/payment/routers/PaymentStandardExitRouterArgs.sol bf16c27381f8c9

exits/payment/routers/PaymentStandardExitRouter.sol 42806bdfedae95

exits/payment/spendingConditions/PaymentOutputToPaymentTxCondition.sol 03e91d87e21ca4

exits/registries/OutputGuardHandlerRegistry.sol 309a123160bbe

exits/registries/SpendingConditionRegistry.sol 3c3d474f0a9fcd

exits/utils/BondSize.sol 5b0d0d28374d8

exits/utils/ExitableTimestamp.sol 43c6aac2ffb2cb7

exits/utils/ExitId.sol 7afda23a55bc86

exits/utils/OutputId.sol 92f09840ae6a9b

exits/utils/TxFinalizationVeri�er.sol fe3ed4518d03e0

framework/BlockController.sol 6739cfe1a0ee45

framework/ExitGameController.sol 80368067a6813

framework/interfaces/IExitProcessor.sol e4c1d8af9e266f9

framework/models/BlockModel.sol b8189e31fa460f

framework/PlasmaFramework.sol ab2f4972d01ca5

framework/Protocol.sol 19a3df96f1038b

framework/registries/ExitGameRegistry.sol 0f005fbde0fc38a

framework/registries/VaultRegistry.sol b67f8e7bc05518

framework/utils/ExitPriority.sol 18b26af2160f3b

Our subsequent review covered the following �les:

File Name

framework/utils/PriorityQueue.sol 122b3e2f81de23

framework/utils/Quarantine.sol eb3c6ca62779e1

transactions/eip712Libs/PaymentEip712Lib.sol 484d1dc077895

transactions/outputs/PaymentOutputModel.sol 2cd78f5327a459

transactions/PaymentTransactionModel.sol 2901a612cba37

transactions/WireTransaction.sol 95919930e6213

utils/AddressPayable.sol fbe6d6c78e748a

utils/Bits.sol ecdb86c5001d0e

utils/FailFastReentrancyGuard.sol af48169f434734

utils/IsDeposit.sol d6968ebd0091e

utils/Merkle.sol 876dad4fb2edea

utils/OnlyFromAddress.sol 7c2992b12e7689

utils/OnlyWithValue.sol 85bf439b5889f9

utils/RLPReader.sol 3fd2f65a4bdc0fc

utils/SafeEthTransfer.sol 056e0166a2e4ef

utils/TxPosLib.sol e3338d37bdd83

utils/UtxoPosLib.sol bf056fd54e5a8a

vaults/Erc20Vault.sol 0b71916cd9cef1

vaults/EthVault.sol 3502005fc37019

vaults/Vault.sol 9cf94dbbd859c7

vaults/veri�ers/Erc20DepositVeri�er.sol deba9753470bc7

vaults/veri�ers/EthDepositVeri�er.sol 5e53ed549695ed

vaults/veri�ers/IErc20DepositVeri�er.sol bd9cc22d1669f8

vaults/veri�ers/IEthDepositVeri�er.sol 943c3ebddf7f85

vaults/ZeroHashesProvider.sol 6564cf101c4b92

File NameFile Name

contracts/src/exits/fee/FeeClaimOutputToPaymentTxCondition.sol 6c

contracts/src/exits/fee/FeeExitGame.sol 17

contracts/src/exits/interfaces/ISpendingCondition.sol 3a

contracts/src/exits/interfaces/IStateTransitionVeri�er.sol a8

contracts/src/exits/payment/controllers/PaymentChallengeIFEInputSpent.sol cee

contracts/src/exits/payment/controllers/PaymentChallengeIFENotCanonical.sol 33

contracts/src/exits/payment/controllers/PaymentChallengeIFEOutputSpent.sol 74

contracts/src/exits/payment/controllers/PaymentChallengeStandardExit.sol e8

contracts/src/exits/payment/controllers/PaymentDeleteInFlightExit.sol 10

contracts/src/exits/payment/controllers/PaymentPiggybackInFlightExit.sol fe7

contracts/src/exits/payment/controllers/PaymentProcessInFlightExit.sol 8c

contracts/src/exits/payment/controllers/PaymentProcessStandardExit.sol 1c

contracts/src/exits/payment/controllers/PaymentStartInFlightExit.sol 31

contracts/src/exits/payment/controllers/PaymentStartStandardExit.sol 19

contracts/src/exits/payment/PaymentExitDataModel.sol d1

contracts/src/exits/payment/PaymentExitGameArgs.sol 77

contracts/src/exits/payment/PaymentExitGame.sol 93

contracts/src/exits/payment/PaymentInFlightExitModelUtils.sol eb

contracts/src/exits/payment/PaymentTransactionStateTransitionVeri�er.sol 64

contracts/src/exits/payment/routers/PaymentInFlightExitRouterArgs.sol 14

contracts/src/exits/payment/routers/PaymentInFlightExitRouter.sol 21

contracts/src/exits/payment/routers/PaymentStandardExitRouterArgs.sol eb

contracts/src/exits/payment/routers/PaymentStandardExitRouter.sol ea

contracts/src/exits/payment/spendingConditions/PaymentOutputToPaymentTxCondition.sol e4

contracts/src/exits/registries/SpendingConditionRegistry.sol b9

contracts/src/exits/utils/BondSize.sol 5b

contracts/src/exits/utils/ExitableTimestamp.sol 43

File Name

contracts/src/exits/utils/ExitId.sol 80

contracts/src/exits/utils/MoreVpFinalization.sol f25

contracts/src/exits/utils/OutputId.sol 92

contracts/src/framework/BlockController.sol 51

contracts/src/framework/ExitGameController.sol cee

contracts/src/framework/interfaces/IExitProcessor.sol e4

contracts/src/framework/models/BlockModel.sol b8

contracts/src/framework/PlasmaFramework.sol ab

contracts/src/framework/Protocol.sol 19

contracts/src/framework/registries/ExitGameRegistry.sol 83

contracts/src/framework/registries/VaultRegistry.sol 06

contracts/src/framework/utils/ExitPriority.sol d6

contracts/src/framework/utils/PriorityQueue.sol 12

contracts/src/framework/utils/Quarantine.sol eb

contracts/src/transactions/eip712Libs/PaymentEip712Lib.sol 89

contracts/src/transactions/FungibleTokenOutputModel.sol 31

contracts/src/transactions/GenericTransaction.sol 48

contracts/src/transactions/PaymentTransactionModel.sol f62

contracts/src/utils/Bits.sol ecd

contracts/src/utils/FailFastReentrancyGuard.sol 8c

contracts/src/utils/Merkle.sol 72

contracts/src/utils/OnlyFromAddress.sol 7c

contracts/src/utils/OnlyWithValue.sol 85

contracts/src/utils/PosLib.sol 47

contracts/src/utils/RLPReader.sol 90

contracts/src/utils/SafeEthTransfer.sol 05

contracts/src/vaults/Erc20Vault.sol 59

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The Reports
may be distributed through other means, including via ConsenSys publications and other
distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of
technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Speci�cally,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and �aws. The review does not extend to the compiler layer, or any other

File Name

contracts/src/vaults/EthVault.sol 7b

contracts/src/vaults/Vault.sol 7a

contracts/src/vaults/veri�ers/Erc20DepositVeri�er.sol 3c

contracts/src/vaults/veri�ers/EthDepositVeri�er.sol 42

contracts/src/vaults/veri�ers/IErc20DepositVeri�er.sol bd

contracts/src/vaults/veri�ers/IEthDepositVeri�er.sol 94

2019 © ConsenSys Privacy Policy

areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its
website. CD hopes that by making these analyses publicly available, it can help the
blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated
otherwise, by ConsenSys and CD.

https://consensys.net/privacy-policy/

